Spaces:
Sleeping
Sleeping
File size: 9,939 Bytes
fa84113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
'''
Efficientdet demo
'''
import argparse
import cv2
import os
import time
from PIL import Image
import PIL.ImageColor as ImageColor
import requests
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as T
from tqdm import tqdm
from effdet import create_model
def get_args_parser():
parser = argparse.ArgumentParser(
'Test detr on one image')
parser.add_argument(
'--img', metavar='IMG',
help='path to image, could be url',
default='https://www.fyidenmark.com/images/denmark-litter.jpg')
parser.add_argument(
'--save', metavar='OUTPUT',
help='path to save image with predictions (if None show image)',
default=None)
parser.add_argument('--classes', nargs='+', default=['Litter'])
parser.add_argument(
'--checkpoint', type=str,
help='path to checkpoint')
parser.add_argument(
'--device', type=str, default='cpu',
help='device to evaluate model (default: cpu)')
parser.add_argument(
'--prob_threshold', type=float, default=0.3,
help='probability threshold to show results (default: 0.5)')
parser.add_argument(
'--video', action='store_true', default=False,
help="If true, we treat impute as video (default: False)")
parser.set_defaults(redundant_bias=None)
return parser
# standard PyTorch mean-std input image normalization
def get_transforms(im, size=768):
transform = T.Compose([
T.Resize((size, size)),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
return transform(im).unsqueeze(0)
def rescale_bboxes(out_bbox, size, resize):
img_w, img_h = size
out_w, out_h = resize
b = out_bbox * torch.tensor([img_w/out_w, img_h/out_h,
img_w/out_w, img_h/out_h],
dtype=torch.float32).to(
out_bbox.device)
return b
# from https://deepdrive.pl/
def get_output(img, prob, boxes, classes=['Litter'], stat_text=None):
# colors for visualization
STANDARD_COLORS = [
'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige',
'Bisque', 'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue',
'AntiqueWhite', 'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk',
'Crimson', 'Cyan', 'DarkCyan', 'DarkGoldenRod', 'DarkGrey',
'DarkKhaki', 'DarkOrange', 'DarkOrchid', 'DarkSalmon',
'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold',
'GoldenRod', 'Salmon', 'Tan', 'HoneyDew', 'HotPink',
'IndianRed', 'Ivory', 'Khaki', 'Lavender', 'LavenderBlush',
'LawnGreen', 'LemonChiffon', 'LightBlue',
'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray',
'LightGrey', 'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen',
'LightSkyBlue', 'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue',
'LightYellow', 'Lime', 'LimeGreen', 'Linen', 'Magenta',
'MediumAquaMarine', 'MediumOrchid', 'MediumPurple',
'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
'MediumTurquoise', 'MediumVioletRed', 'MintCream',
'MistyRose', 'Moccasin', 'NavajoWhite', 'OldLace', 'Olive',
'OliveDrab', 'Orange', 'OrangeRed', 'Orchid', 'PaleGoldenRod',
'PaleGreen', 'PaleTurquoise', 'PaleVioletRed', 'PapayaWhip',
'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown',
'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue',
'GreenYellow', 'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet',
'Wheat', 'White', 'WhiteSmoke', 'Yellow', 'YellowGreen'
]
palette = [ImageColor.getrgb(_) for _ in STANDARD_COLORS]
for p, (x0, y0, x1, y1) in zip(prob, boxes.tolist()):
cl = int(p[1] - 1)
color = palette[cl]
start_p, end_p = (int(x0), int(y0)), (int(x1), int(y1))
cv2.rectangle(img, start_p, end_p, color, 2)
text = "%s %.1f%%" % (classes[cl], p[0]*100)
cv2.putText(img, text, start_p, cv2.FONT_HERSHEY_SIMPLEX, 1,
(0, 0, 0), 10)
cv2.putText(img, text, start_p, cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
if stat_text is not None:
cv2.putText(img, stat_text, (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0, 0, 0), 10)
cv2.putText(img, stat_text, (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1,
(255, 255, 255), 3)
return img
# from https://deepdrive.pl/
def save_frames(args, num_iter=45913):
if not os.path.exists(args.save):
os.makedirs(args.save)
cap = cv2.VideoCapture(args.img)
counter = 0
pbar = tqdm(total=num_iter+1)
num_classes = len(args.classes)
model_name = args.checkpoint.split('-')[-1].split('/')[0]
model = set_model(model_name, num_classes, args.checkpoint, args.device)
model.eval()
model.to(args.device)
while(cap.isOpened()):
ret, img = cap.read()
if img is None:
print("END")
break
# scale + BGR to RGB
inference_size = (768, 768)
scaled_img = cv2.resize(img[:, :, ::-1], inference_size)
transform = T.Compose([
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# mean-std normalize the input image (batch-size: 1)
img_tens = transform(scaled_img).unsqueeze(0).to(args.device)
# Inference
t0 = time.time()
with torch.no_grad():
# propagate through the model
output = model(img_tens)
t1 = time.time()
# keep only predictions above set confidence
bboxes_keep = output[0, output[0, :, 4] > args.prob_threshold]
probas = bboxes_keep[:, 4:]
# convert boxes to image scales
bboxes_scaled = rescale_bboxes(bboxes_keep[:, :4],
(img.shape[1], img.shape[0]),
inference_size)
txt = "Detect-waste %s Threshold=%.2f " \
"Inference %dx%d GPU: %s Inference time %.3fs" % \
(model_name, args.prob_threshold, inference_size[0],
inference_size[1], torch.cuda.get_device_name(0),
t1 - t0)
result = get_output(img, probas, bboxes_scaled,
args.classes, txt)
cv2.imwrite(os.path.join(args.save, 'img%08d.jpg' % counter), result)
counter += 1
pbar.update(1)
del img
del img_tens
del result
cap.release()
def plot_results(pil_img, prob, boxes, classes=['Litter'],
save_path=None, colors=None):
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
if colors is None:
# colors for visualization
colors = 100 * [
[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color=c, linewidth=3))
cl = int(p[1])
text = f'{classes[cl]}: {p[0]:0.2f}'
ax.text(xmin, ymin, text, fontsize=15,
bbox=dict(facecolor='yellow', alpha=0.5))
plt.axis('off')
if save_path is not None:
plt.savefig(save_path, bbox_inches='tight',
transparent=True, pad_inches=0)
plt.close()
print(f'Image saved at {save_path}')
else:
plt.show()
def set_model(model_type, num_classes, checkpoint_path, device):
# create model
model = create_model(
model_type,
bench_task='predict',
num_classes=num_classes,
pretrained=False,
redundant_bias=True,
checkpoint_path=checkpoint_path
)
param_count = sum([m.numel() for m in model.parameters()])
print('Model %s created, param count: %d' % (model_type, param_count))
model = model.to(device)
return model
def main(args):
# prepare model for evaluation
torch.set_grad_enabled(False)
num_classes = len(args.classes)
model_name = args.checkpoint.split('-')[-1].split('/')[0]
model = set_model(model_name, num_classes, args.checkpoint, args.device)
model.eval()
# get image
if args.img.startswith('https'):
im = Image.open(requests.get(args.img, stream=True).raw).convert('RGB')
else:
im = Image.open(args.img).convert('RGB')
# mean-std normalize the input image (batch-size: 1)
img = get_transforms(im)
# propagate through the model
outputs = model(img.to(args.device))
# keep only predictions above set confidence
bboxes_keep = outputs[0, outputs[0, :, 4] > args.prob_threshold]
probas = bboxes_keep[:, 4:]
# convert boxes to image scales
bboxes_scaled = rescale_bboxes(bboxes_keep[:, :4], im.size,
tuple(img.size()[2:]))
# plot and save demo image
plot_results(im, probas, bboxes_scaled.tolist(), args.classes, args.save)
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
if args.video:
save_frames(args)
else:
main(args)
|