File size: 6,391 Bytes
fa84113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright 2020 Google Research. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base box coder.

Box coders convert between coordinate frames, namely image-centric
(with (0,0) on the top left of image) and anchor-centric (with (0,0) being
defined by a specific anchor).

Users of a BoxCoder can call two methods:
 encode: which encodes a box with respect to a given anchor
  (or rather, a tensor of boxes wrt a corresponding tensor of anchors) and
 decode: which inverts this encoding with a decode operation.
In both cases, the arguments are assumed to be in 1-1 correspondence already;
it is not the job of a BoxCoder to perform matching.
"""
import torch
from typing import List, Optional
from .box_list import BoxList

# Box coder types.
FASTER_RCNN = 'faster_rcnn'
KEYPOINT = 'keypoint'
MEAN_STDDEV = 'mean_stddev'
SQUARE = 'square'


"""Faster RCNN box coder.

Faster RCNN box coder follows the coding schema described below:
  ty = (y - ya) / ha
  tx = (x - xa) / wa
  th = log(h / ha)
  tw = log(w / wa)
  where x, y, w, h denote the box's center coordinates, width and height
  respectively. Similarly, xa, ya, wa, ha denote the anchor's center
  coordinates, width and height. tx, ty, tw and th denote the anchor-encoded
  center, width and height respectively.

  See http://arxiv.org/abs/1506.01497 for details.
"""


EPS = 1e-8


#@torch.jit.script
class FasterRcnnBoxCoder(object):
    """Faster RCNN box coder."""

    def __init__(self, scale_factors: Optional[List[float]] = None, eps: float = EPS):
        """Constructor for FasterRcnnBoxCoder.

        Args:
            scale_factors: List of 4 positive scalars to scale ty, tx, th and tw.
                If set to None, does not perform scaling. For Faster RCNN,
                the open-source implementation recommends using [10.0, 10.0, 5.0, 5.0].
        """
        self._scale_factors = scale_factors
        if scale_factors is not None:
            assert len(scale_factors) == 4
            for scalar in scale_factors:
                assert scalar > 0
        self.eps = eps

    #@property
    def code_size(self):
        return 4

    def encode(self, boxes: BoxList, anchors: BoxList):
        """Encode a box collection with respect to anchor collection.

        Args:
            boxes: BoxList holding N boxes to be encoded.
            anchors: BoxList of anchors.

        Returns:
            a tensor representing N anchor-encoded boxes of the format [ty, tx, th, tw].
        """
        # Convert anchors to the center coordinate representation.
        ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()
        ycenter, xcenter, h, w = boxes.get_center_coordinates_and_sizes()
        # Avoid NaN in division and log below.
        ha += self.eps
        wa += self.eps
        h += self.eps
        w += self.eps

        tx = (xcenter - xcenter_a) / wa
        ty = (ycenter - ycenter_a) / ha
        tw = torch.log(w / wa)
        th = torch.log(h / ha)
        # Scales location targets as used in paper for joint training.
        if self._scale_factors is not None:
            ty *= self._scale_factors[0]
            tx *= self._scale_factors[1]
            th *= self._scale_factors[2]
            tw *= self._scale_factors[3]
        return torch.stack([ty, tx, th, tw]).t()

    def decode(self, rel_codes, anchors: BoxList):
        """Decode relative codes to boxes.

        Args:
            rel_codes: a tensor representing N anchor-encoded boxes.
            anchors: BoxList of anchors.

        Returns:
            boxes: BoxList holding N bounding boxes.
        """
        ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()

        ty, tx, th, tw = rel_codes.t().unbind()
        if self._scale_factors is not None:
            ty /= self._scale_factors[0]
            tx /= self._scale_factors[1]
            th /= self._scale_factors[2]
            tw /= self._scale_factors[3]
        w = torch.exp(tw) * wa
        h = torch.exp(th) * ha
        ycenter = ty * ha + ycenter_a
        xcenter = tx * wa + xcenter_a
        ymin = ycenter - h / 2.
        xmin = xcenter - w / 2.
        ymax = ycenter + h / 2.
        xmax = xcenter + w / 2.
        return BoxList(torch.stack([ymin, xmin, ymax, xmax]).t())


def batch_decode(encoded_boxes, box_coder: FasterRcnnBoxCoder, anchors: BoxList):
    """Decode a batch of encoded boxes.

    This op takes a batch of encoded bounding boxes and transforms
    them to a batch of bounding boxes specified by their corners in
    the order of [y_min, x_min, y_max, x_max].

    Args:
        encoded_boxes: a float32 tensor of shape [batch_size, num_anchors,
            code_size] representing the location of the objects.
        box_coder: a BoxCoder object.
        anchors: a BoxList of anchors used to encode `encoded_boxes`.

    Returns:
        decoded_boxes: a float32 tensor of shape [batch_size, num_anchors, coder_size]
            representing the corners of the objects in the order of [y_min, x_min, y_max, x_max].

    Raises:
        ValueError: if batch sizes of the inputs are inconsistent, or if
        the number of anchors inferred from encoded_boxes and anchors are inconsistent.
    """
    assert len(encoded_boxes.shape) == 3
    if encoded_boxes.shape[1] != anchors.num_boxes():
        raise ValueError('The number of anchors inferred from encoded_boxes'
                         ' and anchors are inconsistent: shape[1] of encoded_boxes'
                         ' %s should be equal to the number of anchors: %s.' %
                         (encoded_boxes.shape[1], anchors.num_boxes()))

    decoded_boxes = torch.stack([
        box_coder.decode(boxes, anchors).boxes for boxes in encoded_boxes.unbind()
    ])
    return decoded_boxes