Spaces:
Sleeping
Sleeping
File size: 31,672 Bytes
fa84113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
from .np_mask_list import *
from .metrics import *
class PerImageEvaluation:
"""Evaluate detection result of a single image."""
def __init__(self,
num_gt_classes,
matching_iou_threshold=0.5,
nms_iou_threshold=0.3,
nms_max_output_boxes=50,
group_of_weight=0.0):
"""Initialized PerImageEvaluation by evaluation parameters.
Args:
num_gt_classes: Number of ground truth object classes
matching_iou_threshold: A ratio of area intersection to union, which is
the threshold to consider whether a detection is true positive or not
nms_iou_threshold: IOU threshold used in Non Maximum Suppression.
nms_max_output_boxes: Number of maximum output boxes in NMS.
group_of_weight: Weight of the group-of boxes.
"""
self.matching_iou_threshold = matching_iou_threshold
self.nms_iou_threshold = nms_iou_threshold
self.nms_max_output_boxes = nms_max_output_boxes
self.num_gt_classes = num_gt_classes
self.group_of_weight = group_of_weight
def compute_object_detection_metrics(
self, detected_boxes, detected_scores, detected_class_labels,
gt_boxes, gt_class_labels, gt_is_difficult_list, gt_is_group_of_list,
detected_masks=None, gt_masks=None):
"""Evaluates detections as being tp, fp or weighted from a single image.
The evaluation is done in two stages:
1. All detections are matched to non group-of boxes; true positives are
determined and detections matched to difficult boxes are ignored.
2. Detections that are determined as false positives are matched against
group-of boxes and weighted if matched.
Args:
detected_boxes: A float numpy array of shape [N, 4], representing N
regions of detected object regions. Each row is of the format [y_min, x_min, y_max, x_max]
detected_scores: A float numpy array of shape [N, 1], representing the
confidence scores of the detected N object instances.
detected_class_labels: A integer numpy array of shape [N, 1], repreneting
the class labels of the detected N object instances.
gt_boxes: A float numpy array of shape [M, 4], representing M
regions of object instances in ground truth
gt_class_labels: An integer numpy array of shape [M, 1],
representing M class labels of object instances in ground truth
gt_is_difficult_list: A boolean numpy array of length M denoting
whether a ground truth box is a difficult instance or not
gt_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag
detected_masks: (optional) A uint8 numpy array of shape [N, height,
width]. If not None, the metrics will be computed based on masks.
gt_masks: (optional) A uint8 numpy array of shape [M, height,
width]. Can have empty masks, i.e. where all values are 0.
Returns:
scores: A list of C float numpy arrays. Each numpy array is of
shape [K, 1], representing K scores detected with object class label c
tp_fp_labels: A list of C boolean numpy arrays. Each numpy array
is of shape [K, 1], representing K True/False positive label of
object instances detected with class label c
is_class_correctly_detected_in_image: a numpy integer array of
shape [C, 1], indicating whether the correponding class has a least
one instance being correctly detected in the image
"""
detected_boxes, detected_scores, detected_class_labels, detected_masks = (
self._remove_invalid_boxes(detected_boxes, detected_scores, detected_class_labels, detected_masks))
scores, tp_fp_labels = self._compute_tp_fp(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
detected_class_labels=detected_class_labels,
gt_boxes=gt_boxes,
gt_class_labels=gt_class_labels,
gt_is_difficult_list=gt_is_difficult_list,
gt_is_group_of_list=gt_is_group_of_list,
detected_masks=detected_masks,
gt_masks=gt_masks)
is_class_correctly_detected_in_image = self._compute_cor_loc(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
detected_class_labels=detected_class_labels,
gt_boxes=gt_boxes,
gt_class_labels=gt_class_labels,
detected_masks=detected_masks,
gt_masks=gt_masks)
return scores, tp_fp_labels, is_class_correctly_detected_in_image
def _compute_cor_loc(
self, detected_boxes, detected_scores, detected_class_labels,
gt_boxes, gt_class_labels, detected_masks=None, gt_masks=None):
"""Compute CorLoc score for object detection result.
Args:
detected_boxes: A float numpy array of shape [N, 4], representing N
regions of detected object regions. Each row is of the format [y_min, x_min, y_max, x_max]
detected_scores: A float numpy array of shape [N, 1], representing the
confidence scores of the detected N object instances.
detected_class_labels: A integer numpy array of shape [N, 1], repreneting
the class labels of the detected N object instances.
gt_boxes: A float numpy array of shape [M, 4], representing M
regions of object instances in ground truth
gt_class_labels: An integer numpy array of shape [M, 1],
representing M class labels of object instances in ground truth
detected_masks: (optional) A uint8 numpy array of shape [N, height, width].
If not None, the scores will be computed based on masks.
gt_masks: (optional) A uint8 numpy array of shape [M, height, width].
Returns:
is_class_correctly_detected_in_image: a numpy integer array of
shape [C, 1], indicating whether the correponding class has a least
one instance being correctly detected in the image
Raises:
ValueError: If detected masks is not None but groundtruth masks are None,
or the other way around.
"""
if (detected_masks is not None and gt_masks is None) or (
detected_masks is None and gt_masks is not None):
raise ValueError(
'If `detected_masks` is provided, then `gt_masks` should also be provided.')
is_class_correctly_detected_in_image = np.zeros(
self.num_gt_classes, dtype=int)
for i in range(self.num_gt_classes):
(gt_boxes_at_ith_class, gt_masks_at_ith_class,
detected_boxes_at_ith_class, detected_scores_at_ith_class,
detected_masks_at_ith_class) = self._get_ith_class_arrays(
detected_boxes, detected_scores, detected_masks,
detected_class_labels, gt_boxes, gt_masks,
gt_class_labels, i)
is_class_correctly_detected_in_image[i] = (
self._compute_is_class_correctly_detected_in_image(
detected_boxes=detected_boxes_at_ith_class,
detected_scores=detected_scores_at_ith_class,
gt_boxes=gt_boxes_at_ith_class,
detected_masks=detected_masks_at_ith_class,
gt_masks=gt_masks_at_ith_class))
return is_class_correctly_detected_in_image
def _compute_is_class_correctly_detected_in_image(
self, detected_boxes, detected_scores, gt_boxes, detected_masks=None, gt_masks=None):
"""Compute CorLoc score for a single class.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box coordinates
detected_scores: A 1-d numpy array of length N representing classification score
gt_boxes: A numpy array of shape [M, 4] representing ground truth box coordinates
detected_masks: (optional) A np.uint8 numpy array of shape [N, height, width].
If not None, the scores will be computed based on masks.
gt_masks: (optional) A np.uint8 numpy array of shape [M, height, width].
Returns:
is_class_correctly_detected_in_image: An integer 1 or 0 denoting whether a
class is correctly detected in the image or not
"""
if detected_boxes.size > 0:
if gt_boxes.size > 0:
max_score_id = np.argmax(detected_scores)
mask_mode = False
if detected_masks is not None and gt_masks is not None:
mask_mode = True
if mask_mode:
detected_boxlist = MaskList(
box_data=np.expand_dims(detected_boxes[max_score_id], axis=0),
mask_data=np.expand_dims(detected_masks[max_score_id], axis=0))
gt_boxlist = MaskList(box_data=gt_boxes, mask_data=gt_masks)
iou = iou_masklist(detected_boxlist, gt_boxlist)
else:
detected_boxlist = BoxList(np.expand_dims(detected_boxes[max_score_id, :], axis=0))
gt_boxlist = BoxList(gt_boxes)
iou = iou_boxlist(detected_boxlist, gt_boxlist)
if np.max(iou) >= self.matching_iou_threshold:
return 1
return 0
def _compute_tp_fp(
self, detected_boxes, detected_scores, detected_class_labels,
gt_boxes, gt_class_labels, gt_is_difficult_list, gt_is_group_of_list, detected_masks=None, gt_masks=None):
"""Labels true/false positives of detections of an image across all classes.
Args:
detected_boxes: A float numpy array of shape [N, 4], representing N
regions of detected object regions. Each row is of the format [y_min, x_min, y_max, x_max]
detected_scores: A float numpy array of shape [N, 1], representing the
confidence scores of the detected N object instances.
detected_class_labels: A integer numpy array of shape [N, 1], representing
the class labels of the detected N object instances.
gt_boxes: A float numpy array of shape [M, 4], representing M
regions of object instances in ground truth
gt_class_labels: An integer numpy array of shape [M, 1],
representing M class labels of object instances in ground truth
gt_is_difficult_list: A boolean numpy array of length M denoting
whether a ground truth box is a difficult instance or not
gt_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag
detected_masks: (optional) A np.uint8 numpy array of shape [N, height,
width]. If not None, the scores will be computed based on masks.
gt_masks: (optional) A np.uint8 numpy array of shape [M, height, width].
Returns:
result_scores: A list of float numpy arrays. Each numpy array is of
shape [K, 1], representing K scores detected with object class label c
result_tp_fp_labels: A list of boolean numpy array. Each numpy array is of
shape [K, 1], representing K True/False positive label of object
instances detected with class label c
Raises:
ValueError: If detected masks is not None but groundtruth masks are None,
or the other way around.
"""
if detected_masks is not None and gt_masks is None:
raise ValueError(
'Detected masks is available but groundtruth masks is not.')
if detected_masks is None and gt_masks is not None:
raise ValueError(
'Groundtruth masks is available but detected masks is not.')
result_scores = []
result_tp_fp_labels = []
for i in range(self.num_gt_classes):
gt_is_difficult_list_at_ith_class = (
gt_is_difficult_list[gt_class_labels == i])
gt_is_group_of_list_at_ith_class = (
gt_is_group_of_list[gt_class_labels == i])
(gt_boxes_at_ith_class, gt_masks_at_ith_class,
detected_boxes_at_ith_class, detected_scores_at_ith_class,
detected_masks_at_ith_class) = self._get_ith_class_arrays(
detected_boxes, detected_scores, detected_masks,
detected_class_labels, gt_boxes, gt_masks,
gt_class_labels, i)
scores, tp_fp_labels = self._compute_tp_fp_for_single_class(
detected_boxes=detected_boxes_at_ith_class,
detected_scores=detected_scores_at_ith_class,
gt_boxes=gt_boxes_at_ith_class,
gt_is_difficult_list=gt_is_difficult_list_at_ith_class,
gt_is_group_of_list=gt_is_group_of_list_at_ith_class,
detected_masks=detected_masks_at_ith_class,
gt_masks=gt_masks_at_ith_class)
result_scores.append(scores)
result_tp_fp_labels.append(tp_fp_labels)
return result_scores, result_tp_fp_labels
def _get_overlaps_and_scores_mask_mode(
self, detected_boxes, detected_scores, detected_masks,
gt_boxes, gt_masks, gt_is_group_of_list):
"""Computes overlaps and scores between detected and groudntruth masks.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box coordinates
detected_scores: A 1-d numpy array of length N representing classification score
detected_masks: A uint8 numpy array of shape [N, height, width]. If not
None, the scores will be computed based on masks.
gt_boxes: A numpy array of shape [M, 4] representing ground truth box coordinates
gt_masks: A uint8 numpy array of shape [M, height, width].
gt_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag. If a groundtruth box is
group-of box, every detection matching this box is ignored.
Returns:
iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_group_of_boxlist.num_boxes() == 0 it will be None.
scores: The score of the detected boxlist.
num_boxes: Number of non-maximum suppressed detected boxes.
"""
detected_boxlist = MaskList(box_data=detected_boxes, mask_data=detected_masks)
detected_boxlist.add_field('scores', detected_scores)
detected_boxlist = non_max_suppression(detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
gt_non_group_of_boxlist = MaskList(
box_data=gt_boxes[~gt_is_group_of_list], mask_data=gt_masks[~gt_is_group_of_list])
gt_group_of_boxlist = MaskList(
box_data=gt_boxes[gt_is_group_of_list], mask_data=gt_masks[gt_is_group_of_list])
iou_b = iou_masklist(detected_boxlist, gt_non_group_of_boxlist)
ioa_b = np.transpose(ioa_masklist(gt_group_of_boxlist, detected_boxlist))
scores = detected_boxlist.get_field('scores')
num_boxes = detected_boxlist.num_boxes()
return iou_b, ioa_b, scores, num_boxes
def _get_overlaps_and_scores_box_mode(
self, detected_boxes, detected_scores, gt_boxes, gt_is_group_of_list):
"""Computes overlaps and scores between detected and groudntruth boxes.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box coordinates
detected_scores: A 1-d numpy array of length N representing classification score
gt_boxes: A numpy array of shape [M, 4] representing ground truth box coordinates
gt_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag. If a groundtruth box is
group-of box, every detection matching this box is ignored.
Returns:
iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_group_of_boxlist.num_boxes() == 0 it will be None.
scores: The score of the detected boxlist.
num_boxes: Number of non-maximum suppressed detected boxes.
"""
detected_boxlist = BoxList(detected_boxes)
detected_boxlist.add_field('scores', detected_scores)
detected_boxlist = non_max_suppression(detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
gt_non_group_of_boxlist = BoxList(gt_boxes[~gt_is_group_of_list])
gt_group_of_boxlist = BoxList(gt_boxes[gt_is_group_of_list])
iou_b = iou_boxlist(detected_boxlist, gt_non_group_of_boxlist)
ioa_b = np.transpose(ioa_boxlist(gt_group_of_boxlist, detected_boxlist))
scores = detected_boxlist.get_field('scores')
num_boxes = detected_boxlist.num_boxes()
return iou_b, ioa_b, scores, num_boxes
def _compute_tp_fp_for_single_class(
self, detected_boxes, detected_scores, gt_boxes,
gt_is_difficult_list, gt_is_group_of_list, detected_masks=None, gt_masks=None):
"""Labels boxes detected with the same class from the same image as tp/fp.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box coordinates
detected_scores: A 1-d numpy array of length N representing classification score
gt_boxes: A numpy array of shape [M, 4] representing ground truth box coordinates
gt_is_difficult_list: A boolean numpy array of length M denoting
whether a ground truth box is a difficult instance or not. If a
groundtruth box is difficult, every detection matching this box is ignored.
gt_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag. If a groundtruth box is
group-of box, every detection matching this box is ignored.
detected_masks: (optional) A uint8 numpy array of shape [N, height,
width]. If not None, the scores will be computed based on masks.
gt_masks: (optional) A uint8 numpy array of shape [M, height, width].
Returns:
Two arrays of the same size, containing all boxes that were evaluated as
being true positives or false positives; if a box matched to a difficult
box or to a group-of box, it is ignored.
scores: A numpy array representing the detection scores.
tp_fp_labels: a boolean numpy array indicating whether a detection is a true positive.
"""
if detected_boxes.size == 0:
return np.array([], dtype=float), np.array([], dtype=bool)
mask_mode = False
if detected_masks is not None and gt_masks is not None:
mask_mode = True
iou_b = np.ndarray([0, 0])
ioa_b = np.ndarray([0, 0])
iou_m = np.ndarray([0, 0])
ioa_m = np.ndarray([0, 0])
if mask_mode:
# For Instance Segmentation Evaluation on Open Images V5, not all boxed
# instances have corresponding segmentation annotations. Those boxes that
# dont have segmentation annotations are represented as empty masks in
# gt_masks nd array.
mask_presence_indicator = (np.sum(gt_masks, axis=(1, 2)) > 0)
iou_m, ioa_m, scores, num_detected_boxes = self._get_overlaps_and_scores_mask_mode(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
detected_masks=detected_masks,
gt_boxes=gt_boxes[mask_presence_indicator, :],
gt_masks=gt_masks[mask_presence_indicator, :],
gt_is_group_of_list=gt_is_group_of_list[mask_presence_indicator])
if sum(mask_presence_indicator) < len(mask_presence_indicator):
# Not all masks are present - some masks are empty
iou_b, ioa_b, _, num_detected_boxes = self._get_overlaps_and_scores_box_mode(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
gt_boxes=gt_boxes[~mask_presence_indicator, :],
gt_is_group_of_list=gt_is_group_of_list[~mask_presence_indicator])
num_detected_boxes = detected_boxes.shape[0]
else:
mask_presence_indicator = np.zeros(gt_is_group_of_list.shape, dtype=bool)
iou_b, ioa_b, scores, num_detected_boxes = self._get_overlaps_and_scores_box_mode(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
gt_boxes=gt_boxes,
gt_is_group_of_list=gt_is_group_of_list)
if gt_boxes.size == 0:
return scores, np.zeros(num_detected_boxes, dtype=bool)
tp_fp_labels = np.zeros(num_detected_boxes, dtype=bool)
is_matched_to_box = np.zeros(num_detected_boxes, dtype=bool)
is_matched_to_difficult = np.zeros(num_detected_boxes, dtype=bool)
is_matched_to_group_of = np.zeros(num_detected_boxes, dtype=bool)
def compute_match_iou(iou_matrix, gt_nongroup_of_is_difficult_list, is_box):
"""Computes TP/FP for non group-of box matching.
The function updates the following local variables:
tp_fp_labels - if a box is matched to group-of
is_matched_to_difficult - the detections that were processed at this are
matched to difficult box.
is_matched_to_box - the detections that were processed at this stage are marked as is_box.
Args:
iou_matrix: intersection-over-union matrix [num_gt_boxes]x[num_det_boxes].
gt_nongroup_of_is_difficult_list: boolean that specifies if gt box is difficult.
is_box: boolean that specifies if currently boxes or masks are processed.
"""
max_overlap_gt_ids = np.argmax(iou_matrix, axis=1)
is_gt_detected = np.zeros(iou_matrix.shape[1], dtype=bool)
for i in range(num_detected_boxes):
gt_id = max_overlap_gt_ids[i]
is_evaluatable = (
not tp_fp_labels[i] and
not is_matched_to_difficult[i] and
iou_matrix[i, gt_id] >= self.matching_iou_threshold and
not is_matched_to_group_of[i])
if is_evaluatable:
if not gt_nongroup_of_is_difficult_list[gt_id]:
if not is_gt_detected[gt_id]:
tp_fp_labels[i] = True
is_gt_detected[gt_id] = True
is_matched_to_box[i] = is_box
else:
is_matched_to_difficult[i] = True
def compute_match_ioa(ioa_matrix, is_box):
"""Computes TP/FP for group-of box matching.
The function updates the following local variables:
is_matched_to_group_of - if a box is matched to group-of
is_matched_to_box - the detections that were processed at this stage are marked as is_box.
Args:
ioa_matrix: intersection-over-area matrix [num_gt_boxes]x[num_det_boxes].
is_box: boolean that specifies if currently boxes or masks are processed.
Returns:
scores_group_of: of detections matched to group-of boxes[num_groupof_matched].
tp_fp_labels_group_of: boolean array of size [num_groupof_matched], all values are True.
"""
scores_group_of = np.zeros(ioa_matrix.shape[1], dtype=float)
tp_fp_labels_group_of = self.group_of_weight * np.ones(ioa_matrix.shape[1], dtype=float)
max_overlap_group_of_gt_ids = np.argmax(ioa_matrix, axis=1)
for i in range(num_detected_boxes):
gt_id = max_overlap_group_of_gt_ids[i]
is_evaluatable = (
not tp_fp_labels[i] and
not is_matched_to_difficult[i] and
ioa_matrix[i, gt_id] >= self.matching_iou_threshold and
not is_matched_to_group_of[i])
if is_evaluatable:
is_matched_to_group_of[i] = True
is_matched_to_box[i] = is_box
scores_group_of[gt_id] = max(scores_group_of[gt_id], scores[i])
selector = np.where((scores_group_of > 0) & (tp_fp_labels_group_of > 0))
scores_group_of = scores_group_of[selector]
tp_fp_labels_group_of = tp_fp_labels_group_of[selector]
return scores_group_of, tp_fp_labels_group_of
# The evaluation is done in two stages:
# 1. Evaluate all objects that actually have instance level masks.
# 2. Evaluate all objects that are not already evaluated as boxes.
if iou_m.shape[1] > 0:
gt_is_difficult_mask_list = gt_is_difficult_list[mask_presence_indicator]
gt_is_group_of_mask_list = gt_is_group_of_list[mask_presence_indicator]
compute_match_iou(iou_m, gt_is_difficult_mask_list[~gt_is_group_of_mask_list], is_box=False)
scores_mask_group_of = np.ndarray([0], dtype=float)
tp_fp_labels_mask_group_of = np.ndarray([0], dtype=float)
if ioa_m.shape[1] > 0:
scores_mask_group_of, tp_fp_labels_mask_group_of = compute_match_ioa(ioa_m, is_box=False)
# Tp-fp evaluation for non-group of boxes (if any).
if iou_b.shape[1] > 0:
gt_is_difficult_box_list = gt_is_difficult_list[~mask_presence_indicator]
gt_is_group_of_box_list = gt_is_group_of_list[~mask_presence_indicator]
compute_match_iou(iou_b, gt_is_difficult_box_list[~gt_is_group_of_box_list], is_box=True)
scores_box_group_of = np.ndarray([0], dtype=float)
tp_fp_labels_box_group_of = np.ndarray([0], dtype=float)
if ioa_b.shape[1] > 0:
scores_box_group_of, tp_fp_labels_box_group_of = compute_match_ioa(ioa_b, is_box=True)
if mask_mode:
# Note: here crowds are treated as ignore regions.
valid_entries = (~is_matched_to_difficult & ~is_matched_to_group_of & ~is_matched_to_box)
return np.concatenate((scores[valid_entries], scores_mask_group_of)),\
np.concatenate((tp_fp_labels[valid_entries].astype(float), tp_fp_labels_mask_group_of))
else:
valid_entries = (~is_matched_to_difficult & ~is_matched_to_group_of)
return np.concatenate((scores[valid_entries], scores_box_group_of)),\
np.concatenate((tp_fp_labels[valid_entries].astype(float), tp_fp_labels_box_group_of))
def _get_ith_class_arrays(
self, detected_boxes, detected_scores, detected_masks, detected_class_labels,
gt_boxes, gt_masks, gt_class_labels, class_index):
"""Returns numpy arrays belonging to class with index `class_index`.
Args:
detected_boxes: A numpy array containing detected boxes.
detected_scores: A numpy array containing detected scores.
detected_masks: A numpy array containing detected masks.
detected_class_labels: A numpy array containing detected class labels.
gt_boxes: A numpy array containing groundtruth boxes.
gt_masks: A numpy array containing groundtruth masks.
gt_class_labels: A numpy array containing groundtruth class labels.
class_index: An integer index.
Returns:
gt_boxes_at_ith_class: A numpy array containing groundtruth boxes labeled as ith class.
gt_masks_at_ith_class: A numpy array containing groundtruth masks labeled as ith class.
detected_boxes_at_ith_class: A numpy array containing detected boxes corresponding to the ith class.
detected_scores_at_ith_class: A numpy array containing detected scores corresponding to the ith class.
detected_masks_at_ith_class: A numpy array containing detected masks corresponding to the ith class.
"""
selected_groundtruth = (gt_class_labels == class_index)
gt_boxes_at_ith_class = gt_boxes[selected_groundtruth]
if gt_masks is not None:
gt_masks_at_ith_class = gt_masks[selected_groundtruth]
else:
gt_masks_at_ith_class = None
selected_detections = (detected_class_labels == class_index)
detected_boxes_at_ith_class = detected_boxes[selected_detections]
detected_scores_at_ith_class = detected_scores[selected_detections]
if detected_masks is not None:
detected_masks_at_ith_class = detected_masks[selected_detections]
else:
detected_masks_at_ith_class = None
return (gt_boxes_at_ith_class, gt_masks_at_ith_class,
detected_boxes_at_ith_class, detected_scores_at_ith_class,
detected_masks_at_ith_class)
def _remove_invalid_boxes(
self, detected_boxes, detected_scores, detected_class_labels, detected_masks=None):
"""Removes entries with invalid boxes.
A box is invalid if either its xmax is smaller than its xmin, or its ymax is smaller than its ymin.
Args:
detected_boxes: A float numpy array of size [num_boxes, 4] containing box
coordinates in [ymin, xmin, ymax, xmax] format.
detected_scores: A float numpy array of size [num_boxes].
detected_class_labels: A int32 numpy array of size [num_boxes].
detected_masks: A uint8 numpy array of size [num_boxes, height, width].
Returns:
valid_detected_boxes: A float numpy array of size [num_valid_boxes, 4]
containing box coordinates in [ymin, xmin, ymax, xmax] format.
valid_detected_scores: A float numpy array of size [num_valid_boxes].
valid_detected_class_labels: A int32 numpy array of size [num_valid_boxes].
valid_detected_masks: A uint8 numpy array of size [num_valid_boxes, height, width].
"""
valid_indices = np.logical_and(
detected_boxes[:, 0] < detected_boxes[:, 2], detected_boxes[:, 1] < detected_boxes[:, 3])
detected_boxes = detected_boxes[valid_indices]
detected_scores = detected_scores[valid_indices]
detected_class_labels = detected_class_labels[valid_indices]
if detected_masks is not None:
detected_masks = detected_masks[valid_indices]
return [detected_boxes, detected_scores, detected_class_labels, detected_masks]
|