File size: 14,552 Bytes
fa84113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import logging

import numpy as np

from effdet.evaluation.metrics import compute_precision_recall, compute_average_precision, compute_cor_loc
from effdet.evaluation.per_image_evaluation import PerImageEvaluation


class ObjectDetectionEvaluation:
    """Internal implementation of Pascal object detection metrics."""

    def __init__(self,
                 num_gt_classes,
                 matching_iou_threshold=0.5,
                 nms_iou_threshold=1.0,
                 nms_max_output_boxes=10000,
                 recall_lower_bound=0.0,
                 recall_upper_bound=1.0,
                 use_weighted_mean_ap=False,
                 label_id_offset=0,
                 group_of_weight=0.0,
                 per_image_eval_class=PerImageEvaluation):
        """Constructor.
        Args:
            num_gt_classes: Number of ground-truth classes.
            matching_iou_threshold: IOU threshold used for matching detected boxes to ground-truth boxes.
            nms_iou_threshold: IOU threshold used for non-maximum suppression.
            nms_max_output_boxes: Maximum number of boxes returned by non-maximum suppression.
            recall_lower_bound: lower bound of recall operating area
            recall_upper_bound: upper bound of recall operating area
            use_weighted_mean_ap: (optional) boolean which determines if the mean
                average precision is computed directly from the scores and tp_fp_labels of all classes.
            label_id_offset: The label id offset.
            group_of_weight: Weight of group-of boxes.If set to 0, detections of the
                correct class within a group-of box are ignored. If weight is > 0, then
                if at least one detection falls within a group-of box with
                matching_iou_threshold, weight group_of_weight is added to true
                positives. Consequently, if no detection falls within a group-of box,
                weight group_of_weight is added to false negatives.
            per_image_eval_class: The class that contains functions for computing per image metrics.
        Raises:
            ValueError: if num_gt_classes is smaller than 1.
        """
        if num_gt_classes < 1:
            raise ValueError('Need at least 1 groundtruth class for evaluation.')

        self.per_image_eval = per_image_eval_class(
            num_gt_classes=num_gt_classes,
            matching_iou_threshold=matching_iou_threshold,
            nms_iou_threshold=nms_iou_threshold,
            nms_max_output_boxes=nms_max_output_boxes,
            group_of_weight=group_of_weight)
        self.recall_lower_bound = recall_lower_bound
        self.recall_upper_bound = recall_upper_bound
        self.group_of_weight = group_of_weight
        self.num_class = num_gt_classes
        self.use_weighted_mean_ap = use_weighted_mean_ap
        self.label_id_offset = label_id_offset

        self.gt_boxes = {}
        self.gt_class_labels = {}
        self.gt_masks = {}
        self.gt_is_difficult_list = {}
        self.gt_is_group_of_list = {}
        self.num_gt_instances_per_class = np.zeros(self.num_class, dtype=float)
        self.num_gt_imgs_per_class = np.zeros(self.num_class, dtype=int)

        self._initialize_detections()

    def _initialize_detections(self):
        """Initializes internal data structures."""
        self.detection_keys = set()
        self.scores_per_class = [[] for _ in range(self.num_class)]
        self.tp_fp_labels_per_class = [[] for _ in range(self.num_class)]
        self.num_images_correctly_detected_per_class = np.zeros(self.num_class)
        self.average_precision_per_class = np.empty(self.num_class, dtype=float)
        self.average_precision_per_class.fill(np.nan)
        self.precisions_per_class = [np.nan] * self.num_class
        self.recalls_per_class = [np.nan] * self.num_class
        self.sum_tp_class = [np.nan] * self.num_class

        self.corloc_per_class = np.ones(self.num_class, dtype=float)

    def clear_detections(self):
        self._initialize_detections()

    def add_single_ground_truth_image_info(
            self, image_key, gt_boxes, gt_class_labels,
            gt_is_difficult_list=None, gt_is_group_of_list=None, gt_masks=None):
        """Adds groundtruth for a single image to be used for evaluation.
        Args:
            image_key: A unique string/integer identifier for the image.
            gt_boxes: float32 numpy array of shape [num_boxes, 4] containing
                `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
            gt_class_labels: integer numpy array of shape [num_boxes]
                containing 0-indexed groundtruth classes for the boxes.
            gt_is_difficult_list: A length M numpy boolean array denoting
                whether a ground truth box is a difficult instance or not. To support
                the case that no boxes are difficult, it is by default set as None.
            gt_is_group_of_list: A length M numpy boolean array denoting
                whether a ground truth box is a group-of box or not. To support the case
                that no boxes are groups-of, it is by default set as None.
            gt_masks: uint8 numpy array of shape [num_boxes, height, width]
                containing `num_boxes` groundtruth masks. The mask values range from 0 to 1.
        """
        if image_key in self.gt_boxes:
            logging.warning('image %s has already been added to the ground truth database.', image_key)
            return

        self.gt_boxes[image_key] = gt_boxes
        self.gt_class_labels[image_key] = gt_class_labels
        self.gt_masks[image_key] = gt_masks
        if gt_is_difficult_list is None:
            num_boxes = gt_boxes.shape[0]
            gt_is_difficult_list = np.zeros(num_boxes, dtype=bool)
        gt_is_difficult_list = gt_is_difficult_list.astype(dtype=bool)
        self.gt_is_difficult_list[image_key] = gt_is_difficult_list
        if gt_is_group_of_list is None:
            num_boxes = gt_boxes.shape[0]
            gt_is_group_of_list = np.zeros(num_boxes, dtype=bool)
        if gt_masks is None:
            num_boxes = gt_boxes.shape[0]
            mask_presence_indicator = np.zeros(num_boxes, dtype=bool)
        else:
            mask_presence_indicator = (np.sum(gt_masks, axis=(1, 2)) == 0).astype(dtype=bool)

        gt_is_group_of_list = gt_is_group_of_list.astype(dtype=bool)
        self.gt_is_group_of_list[image_key] = gt_is_group_of_list

        # ignore boxes without masks
        masked_gt_is_difficult_list = gt_is_difficult_list | mask_presence_indicator
        for class_index in range(self.num_class):
            num_gt_instances = np.sum(
                gt_class_labels[~masked_gt_is_difficult_list & ~gt_is_group_of_list] == class_index)
            num_groupof_gt_instances = self.group_of_weight * np.sum(
                gt_class_labels[gt_is_group_of_list & ~masked_gt_is_difficult_list] == class_index)
            self.num_gt_instances_per_class[class_index] += num_gt_instances + num_groupof_gt_instances
            if np.any(gt_class_labels == class_index):
                self.num_gt_imgs_per_class[class_index] += 1

    def add_single_detected_image_info(
            self, image_key, detected_boxes, detected_scores, detected_class_labels, detected_masks=None):
        """Adds detections for a single image to be used for evaluation.
        Args:
            image_key: A unique string/integer identifier for the image.
            detected_boxes: float32 numpy array of shape [num_boxes, 4] containing
                `num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in
                absolute image coordinates.
            detected_scores: float32 numpy array of shape [num_boxes] containing
                detection scores for the boxes.
            detected_class_labels: integer numpy array of shape [num_boxes] containing
                0-indexed detection classes for the boxes.
            detected_masks: np.uint8 numpy array of shape [num_boxes, height, width]
                containing `num_boxes` detection masks with values ranging between 0 and 1.
        Raises:
            ValueError: if the number of boxes, scores and class labels differ in length.
        """
        if len(detected_boxes) != len(detected_scores) or len(detected_boxes) != len(detected_class_labels):
            raise ValueError(
                'detected_boxes, detected_scores and '
                'detected_class_labels should all have same lengths. Got'
                '[%d, %d, %d]' % len(detected_boxes), len(detected_scores),
                len(detected_class_labels))

        if image_key in self.detection_keys:
            logging.warning('image %s has already been added to the detection result database', image_key)
            return

        self.detection_keys.add(image_key)
        if image_key in self.gt_boxes:
            gt_boxes = self.gt_boxes[image_key]
            gt_class_labels = self.gt_class_labels[image_key]
            # Masks are popped instead of look up. The reason is that we do not want
            # to keep all masks in memory which can cause memory overflow.
            gt_masks = self.gt_masks.pop(image_key)
            gt_is_difficult_list = self.gt_is_difficult_list[image_key]
            gt_is_group_of_list = self.gt_is_group_of_list[image_key]
        else:
            gt_boxes = np.empty(shape=[0, 4], dtype=float)
            gt_class_labels = np.array([], dtype=int)
            if detected_masks is None:
                gt_masks = None
            else:
                gt_masks = np.empty(shape=[0, 1, 1], dtype=float)
            gt_is_difficult_list = np.array([], dtype=bool)
            gt_is_group_of_list = np.array([], dtype=bool)
        scores, tp_fp_labels, is_class_correctly_detected_in_image = \
            self.per_image_eval.compute_object_detection_metrics(
                detected_boxes=detected_boxes,
                detected_scores=detected_scores,
                detected_class_labels=detected_class_labels,
                gt_boxes=gt_boxes,
                gt_class_labels=gt_class_labels,
                gt_is_difficult_list=gt_is_difficult_list,
                gt_is_group_of_list=gt_is_group_of_list,
                detected_masks=detected_masks,
                gt_masks=gt_masks)

        for i in range(self.num_class):
            if scores[i].shape[0] > 0:
                self.scores_per_class[i].append(scores[i])
                self.tp_fp_labels_per_class[i].append(tp_fp_labels[i])
        self.num_images_correctly_detected_per_class += is_class_correctly_detected_in_image

    def evaluate(self):
        """Compute evaluation result.
        Returns:
            A dict with the following fields -
                average_precision: float numpy array of average precision for each class.
                mean_ap: mean average precision of all classes, float scalar
                precisions: List of precisions, each precision is a float numpy array
                recalls: List of recalls, each recall is a float numpy array
                corloc: numpy float array
                mean_corloc: Mean CorLoc score for each class, float scalar
        """
        if (self.num_gt_instances_per_class == 0).any():
            logging.warning(
                'The following classes have no ground truth examples: %s',
                np.squeeze(np.argwhere(self.num_gt_instances_per_class == 0)) + self.label_id_offset)

        if self.use_weighted_mean_ap:
            all_scores = np.array([], dtype=float)
            all_tp_fp_labels = np.array([], dtype=bool)
        for class_index in range(self.num_class):
            if self.num_gt_instances_per_class[class_index] == 0:
                continue
            if not self.scores_per_class[class_index]:
                scores = np.array([], dtype=float)
                tp_fp_labels = np.array([], dtype=float)
            else:
                scores = np.concatenate(self.scores_per_class[class_index])
                tp_fp_labels = np.concatenate(self.tp_fp_labels_per_class[class_index])
            if self.use_weighted_mean_ap:
                all_scores = np.append(all_scores, scores)
                all_tp_fp_labels = np.append(all_tp_fp_labels, tp_fp_labels)
            precision, recall = compute_precision_recall(
                scores, tp_fp_labels, self.num_gt_instances_per_class[class_index])
            recall_within_bound_indices = [
                index for index, value in enumerate(recall) if
                value >= self.recall_lower_bound and value <= self.recall_upper_bound
            ]
            recall_within_bound = recall[recall_within_bound_indices]
            precision_within_bound = precision[recall_within_bound_indices]

            self.precisions_per_class[class_index] = precision_within_bound
            self.recalls_per_class[class_index] = recall_within_bound
            self.sum_tp_class[class_index] = tp_fp_labels.sum()
            average_precision = compute_average_precision(precision_within_bound, recall_within_bound)
            self.average_precision_per_class[class_index] = average_precision
            logging.debug('average_precision: %f', average_precision)

        self.corloc_per_class = compute_cor_loc(
            self.num_gt_imgs_per_class, self.num_images_correctly_detected_per_class)

        if self.use_weighted_mean_ap:
            num_gt_instances = np.sum(self.num_gt_instances_per_class)
            precision, recall = compute_precision_recall(all_scores, all_tp_fp_labels, num_gt_instances)
            recall_within_bound_indices = [
                index for index, value in enumerate(recall) if
                value >= self.recall_lower_bound and value <= self.recall_upper_bound
            ]
            recall_within_bound = recall[recall_within_bound_indices]
            precision_within_bound = precision[recall_within_bound_indices]
            mean_ap = compute_average_precision(precision_within_bound, recall_within_bound)
        else:
            mean_ap = np.nanmean(self.average_precision_per_class)
        mean_corloc = np.nanmean(self.corloc_per_class)

        return dict(
            per_class_ap=self.average_precision_per_class, mean_ap=mean_ap,
            per_class_precision=self.precisions_per_class,
            per_class_recall=self.recalls_per_class,
            per_class_corlocs=self.corloc_per_class, mean_corloc=mean_corloc)