Spaces:
Sleeping
Sleeping
File size: 14,552 Bytes
fa84113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import logging
import numpy as np
from effdet.evaluation.metrics import compute_precision_recall, compute_average_precision, compute_cor_loc
from effdet.evaluation.per_image_evaluation import PerImageEvaluation
class ObjectDetectionEvaluation:
"""Internal implementation of Pascal object detection metrics."""
def __init__(self,
num_gt_classes,
matching_iou_threshold=0.5,
nms_iou_threshold=1.0,
nms_max_output_boxes=10000,
recall_lower_bound=0.0,
recall_upper_bound=1.0,
use_weighted_mean_ap=False,
label_id_offset=0,
group_of_weight=0.0,
per_image_eval_class=PerImageEvaluation):
"""Constructor.
Args:
num_gt_classes: Number of ground-truth classes.
matching_iou_threshold: IOU threshold used for matching detected boxes to ground-truth boxes.
nms_iou_threshold: IOU threshold used for non-maximum suppression.
nms_max_output_boxes: Maximum number of boxes returned by non-maximum suppression.
recall_lower_bound: lower bound of recall operating area
recall_upper_bound: upper bound of recall operating area
use_weighted_mean_ap: (optional) boolean which determines if the mean
average precision is computed directly from the scores and tp_fp_labels of all classes.
label_id_offset: The label id offset.
group_of_weight: Weight of group-of boxes.If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0, then
if at least one detection falls within a group-of box with
matching_iou_threshold, weight group_of_weight is added to true
positives. Consequently, if no detection falls within a group-of box,
weight group_of_weight is added to false negatives.
per_image_eval_class: The class that contains functions for computing per image metrics.
Raises:
ValueError: if num_gt_classes is smaller than 1.
"""
if num_gt_classes < 1:
raise ValueError('Need at least 1 groundtruth class for evaluation.')
self.per_image_eval = per_image_eval_class(
num_gt_classes=num_gt_classes,
matching_iou_threshold=matching_iou_threshold,
nms_iou_threshold=nms_iou_threshold,
nms_max_output_boxes=nms_max_output_boxes,
group_of_weight=group_of_weight)
self.recall_lower_bound = recall_lower_bound
self.recall_upper_bound = recall_upper_bound
self.group_of_weight = group_of_weight
self.num_class = num_gt_classes
self.use_weighted_mean_ap = use_weighted_mean_ap
self.label_id_offset = label_id_offset
self.gt_boxes = {}
self.gt_class_labels = {}
self.gt_masks = {}
self.gt_is_difficult_list = {}
self.gt_is_group_of_list = {}
self.num_gt_instances_per_class = np.zeros(self.num_class, dtype=float)
self.num_gt_imgs_per_class = np.zeros(self.num_class, dtype=int)
self._initialize_detections()
def _initialize_detections(self):
"""Initializes internal data structures."""
self.detection_keys = set()
self.scores_per_class = [[] for _ in range(self.num_class)]
self.tp_fp_labels_per_class = [[] for _ in range(self.num_class)]
self.num_images_correctly_detected_per_class = np.zeros(self.num_class)
self.average_precision_per_class = np.empty(self.num_class, dtype=float)
self.average_precision_per_class.fill(np.nan)
self.precisions_per_class = [np.nan] * self.num_class
self.recalls_per_class = [np.nan] * self.num_class
self.sum_tp_class = [np.nan] * self.num_class
self.corloc_per_class = np.ones(self.num_class, dtype=float)
def clear_detections(self):
self._initialize_detections()
def add_single_ground_truth_image_info(
self, image_key, gt_boxes, gt_class_labels,
gt_is_difficult_list=None, gt_is_group_of_list=None, gt_masks=None):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_key: A unique string/integer identifier for the image.
gt_boxes: float32 numpy array of shape [num_boxes, 4] containing
`num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
gt_class_labels: integer numpy array of shape [num_boxes]
containing 0-indexed groundtruth classes for the boxes.
gt_is_difficult_list: A length M numpy boolean array denoting
whether a ground truth box is a difficult instance or not. To support
the case that no boxes are difficult, it is by default set as None.
gt_is_group_of_list: A length M numpy boolean array denoting
whether a ground truth box is a group-of box or not. To support the case
that no boxes are groups-of, it is by default set as None.
gt_masks: uint8 numpy array of shape [num_boxes, height, width]
containing `num_boxes` groundtruth masks. The mask values range from 0 to 1.
"""
if image_key in self.gt_boxes:
logging.warning('image %s has already been added to the ground truth database.', image_key)
return
self.gt_boxes[image_key] = gt_boxes
self.gt_class_labels[image_key] = gt_class_labels
self.gt_masks[image_key] = gt_masks
if gt_is_difficult_list is None:
num_boxes = gt_boxes.shape[0]
gt_is_difficult_list = np.zeros(num_boxes, dtype=bool)
gt_is_difficult_list = gt_is_difficult_list.astype(dtype=bool)
self.gt_is_difficult_list[image_key] = gt_is_difficult_list
if gt_is_group_of_list is None:
num_boxes = gt_boxes.shape[0]
gt_is_group_of_list = np.zeros(num_boxes, dtype=bool)
if gt_masks is None:
num_boxes = gt_boxes.shape[0]
mask_presence_indicator = np.zeros(num_boxes, dtype=bool)
else:
mask_presence_indicator = (np.sum(gt_masks, axis=(1, 2)) == 0).astype(dtype=bool)
gt_is_group_of_list = gt_is_group_of_list.astype(dtype=bool)
self.gt_is_group_of_list[image_key] = gt_is_group_of_list
# ignore boxes without masks
masked_gt_is_difficult_list = gt_is_difficult_list | mask_presence_indicator
for class_index in range(self.num_class):
num_gt_instances = np.sum(
gt_class_labels[~masked_gt_is_difficult_list & ~gt_is_group_of_list] == class_index)
num_groupof_gt_instances = self.group_of_weight * np.sum(
gt_class_labels[gt_is_group_of_list & ~masked_gt_is_difficult_list] == class_index)
self.num_gt_instances_per_class[class_index] += num_gt_instances + num_groupof_gt_instances
if np.any(gt_class_labels == class_index):
self.num_gt_imgs_per_class[class_index] += 1
def add_single_detected_image_info(
self, image_key, detected_boxes, detected_scores, detected_class_labels, detected_masks=None):
"""Adds detections for a single image to be used for evaluation.
Args:
image_key: A unique string/integer identifier for the image.
detected_boxes: float32 numpy array of shape [num_boxes, 4] containing
`num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in
absolute image coordinates.
detected_scores: float32 numpy array of shape [num_boxes] containing
detection scores for the boxes.
detected_class_labels: integer numpy array of shape [num_boxes] containing
0-indexed detection classes for the boxes.
detected_masks: np.uint8 numpy array of shape [num_boxes, height, width]
containing `num_boxes` detection masks with values ranging between 0 and 1.
Raises:
ValueError: if the number of boxes, scores and class labels differ in length.
"""
if len(detected_boxes) != len(detected_scores) or len(detected_boxes) != len(detected_class_labels):
raise ValueError(
'detected_boxes, detected_scores and '
'detected_class_labels should all have same lengths. Got'
'[%d, %d, %d]' % len(detected_boxes), len(detected_scores),
len(detected_class_labels))
if image_key in self.detection_keys:
logging.warning('image %s has already been added to the detection result database', image_key)
return
self.detection_keys.add(image_key)
if image_key in self.gt_boxes:
gt_boxes = self.gt_boxes[image_key]
gt_class_labels = self.gt_class_labels[image_key]
# Masks are popped instead of look up. The reason is that we do not want
# to keep all masks in memory which can cause memory overflow.
gt_masks = self.gt_masks.pop(image_key)
gt_is_difficult_list = self.gt_is_difficult_list[image_key]
gt_is_group_of_list = self.gt_is_group_of_list[image_key]
else:
gt_boxes = np.empty(shape=[0, 4], dtype=float)
gt_class_labels = np.array([], dtype=int)
if detected_masks is None:
gt_masks = None
else:
gt_masks = np.empty(shape=[0, 1, 1], dtype=float)
gt_is_difficult_list = np.array([], dtype=bool)
gt_is_group_of_list = np.array([], dtype=bool)
scores, tp_fp_labels, is_class_correctly_detected_in_image = \
self.per_image_eval.compute_object_detection_metrics(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
detected_class_labels=detected_class_labels,
gt_boxes=gt_boxes,
gt_class_labels=gt_class_labels,
gt_is_difficult_list=gt_is_difficult_list,
gt_is_group_of_list=gt_is_group_of_list,
detected_masks=detected_masks,
gt_masks=gt_masks)
for i in range(self.num_class):
if scores[i].shape[0] > 0:
self.scores_per_class[i].append(scores[i])
self.tp_fp_labels_per_class[i].append(tp_fp_labels[i])
self.num_images_correctly_detected_per_class += is_class_correctly_detected_in_image
def evaluate(self):
"""Compute evaluation result.
Returns:
A dict with the following fields -
average_precision: float numpy array of average precision for each class.
mean_ap: mean average precision of all classes, float scalar
precisions: List of precisions, each precision is a float numpy array
recalls: List of recalls, each recall is a float numpy array
corloc: numpy float array
mean_corloc: Mean CorLoc score for each class, float scalar
"""
if (self.num_gt_instances_per_class == 0).any():
logging.warning(
'The following classes have no ground truth examples: %s',
np.squeeze(np.argwhere(self.num_gt_instances_per_class == 0)) + self.label_id_offset)
if self.use_weighted_mean_ap:
all_scores = np.array([], dtype=float)
all_tp_fp_labels = np.array([], dtype=bool)
for class_index in range(self.num_class):
if self.num_gt_instances_per_class[class_index] == 0:
continue
if not self.scores_per_class[class_index]:
scores = np.array([], dtype=float)
tp_fp_labels = np.array([], dtype=float)
else:
scores = np.concatenate(self.scores_per_class[class_index])
tp_fp_labels = np.concatenate(self.tp_fp_labels_per_class[class_index])
if self.use_weighted_mean_ap:
all_scores = np.append(all_scores, scores)
all_tp_fp_labels = np.append(all_tp_fp_labels, tp_fp_labels)
precision, recall = compute_precision_recall(
scores, tp_fp_labels, self.num_gt_instances_per_class[class_index])
recall_within_bound_indices = [
index for index, value in enumerate(recall) if
value >= self.recall_lower_bound and value <= self.recall_upper_bound
]
recall_within_bound = recall[recall_within_bound_indices]
precision_within_bound = precision[recall_within_bound_indices]
self.precisions_per_class[class_index] = precision_within_bound
self.recalls_per_class[class_index] = recall_within_bound
self.sum_tp_class[class_index] = tp_fp_labels.sum()
average_precision = compute_average_precision(precision_within_bound, recall_within_bound)
self.average_precision_per_class[class_index] = average_precision
logging.debug('average_precision: %f', average_precision)
self.corloc_per_class = compute_cor_loc(
self.num_gt_imgs_per_class, self.num_images_correctly_detected_per_class)
if self.use_weighted_mean_ap:
num_gt_instances = np.sum(self.num_gt_instances_per_class)
precision, recall = compute_precision_recall(all_scores, all_tp_fp_labels, num_gt_instances)
recall_within_bound_indices = [
index for index, value in enumerate(recall) if
value >= self.recall_lower_bound and value <= self.recall_upper_bound
]
recall_within_bound = recall[recall_within_bound_indices]
precision_within_bound = precision[recall_within_bound_indices]
mean_ap = compute_average_precision(precision_within_bound, recall_within_bound)
else:
mean_ap = np.nanmean(self.average_precision_per_class)
mean_corloc = np.nanmean(self.corloc_per_class)
return dict(
per_class_ap=self.average_precision_per_class, mean_ap=mean_ap,
per_class_precision=self.precisions_per_class,
per_class_recall=self.recalls_per_class,
per_class_corlocs=self.corloc_per_class, mean_corloc=mean_corloc)
|