File size: 6,591 Bytes
fa84113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np


def compute_precision_recall(scores, labels, num_gt):
    """Compute precision and recall.
    Args:
        scores: A float numpy array representing detection score
        labels: A float numpy array representing weighted true/false positive labels
        num_gt: Number of ground truth instances
    Raises:
        ValueError: if the input is not of the correct format
    Returns:
        precision: Fraction of positive instances over detected ones. This value is
            None if no ground truth labels are present.
        recall: Fraction of detected positive instance over all positive instances.
            This value is None if no ground truth labels are present.
    """
    if not isinstance(labels, np.ndarray) or len(labels.shape) != 1:
        raise ValueError("labels must be single dimension numpy array")

    if labels.dtype != np.float and labels.dtype != np.bool:
        raise ValueError("labels type must be either bool or float")

    if not isinstance(scores, np.ndarray) or len(scores.shape) != 1:
        raise ValueError("scores must be single dimension numpy array")

    if num_gt < np.sum(labels):
        raise ValueError("Number of true positives must be smaller than num_gt.")

    if len(scores) != len(labels):
        raise ValueError("scores and labels must be of the same size.")

    if num_gt == 0:
        return None, None

    sorted_indices = np.argsort(scores)
    sorted_indices = sorted_indices[::-1]
    true_positive_labels = labels[sorted_indices]
    false_positive_labels = (true_positive_labels <= 0).astype(float)
    cum_true_positives = np.cumsum(true_positive_labels)
    cum_false_positives = np.cumsum(false_positive_labels)
    precision = cum_true_positives.astype(float) / (cum_true_positives + cum_false_positives)
    recall = cum_true_positives.astype(float) / num_gt
    return precision, recall


def compute_average_precision(precision, recall):
    """Compute Average Precision according to the definition in VOCdevkit.
    Precision is modified to ensure that it does not decrease as recall
    decrease.
    Args:
        precision: A float [N, 1] numpy array of precisions
        recall: A float [N, 1] numpy array of recalls
    Raises:
        ValueError: if the input is not of the correct format
    Returns:
        average_precison: The area under the precision recall curve. NaN if
            precision and recall are None.
    """
    if precision is None:
        if recall is not None:
            raise ValueError("If precision is None, recall must also be None")
        return np.NAN

    if not isinstance(precision, np.ndarray) or not isinstance(recall, np.ndarray):
        raise ValueError("precision and recall must be numpy array")
    if precision.dtype != np.float or recall.dtype != np.float:
        raise ValueError("input must be float numpy array.")
    if len(precision) != len(recall):
        raise ValueError("precision and recall must be of the same size.")
    if not precision.size:
        return 0.0
    if np.amin(precision) < 0 or np.amax(precision) > 1:
        raise ValueError("Precision must be in the range of [0, 1].")
    if np.amin(recall) < 0 or np.amax(recall) > 1:
        raise ValueError("recall must be in the range of [0, 1].")
    if not all(recall[i] <= recall[i + 1] for i in range(len(recall) - 1)):
        raise ValueError("recall must be a non-decreasing array")

    recall = np.concatenate([[0], recall, [1]])
    precision = np.concatenate([[0], precision, [0]])

    # Preprocess precision to be a non-decreasing array
    for i in range(len(precision) - 2, -1, -1):
        precision[i] = np.maximum(precision[i], precision[i + 1])

    indices = np.where(recall[1:] != recall[:-1])[0] + 1
    average_precision = np.sum((recall[indices] - recall[indices - 1]) * precision[indices])
    return average_precision


def compute_cor_loc(num_gt_imgs_per_class, num_images_correctly_detected_per_class):
    """Compute CorLoc according to the definition in the following paper.
    https://www.robots.ox.ac.uk/~vgg/rg/papers/deselaers-eccv10.pdf
    Returns nans if there are no ground truth images for a class.
    Args:
        num_gt_imgs_per_class: 1D array, representing number of images containing
            at least one object instance of a particular class
        num_images_correctly_detected_per_class: 1D array, representing number of
            images that are correctly detected at least one object instance of a particular class
    Returns:
        corloc_per_class: A float numpy array represents the corloc score of each class
    """
    return np.where(
        num_gt_imgs_per_class == 0, np.nan,
        num_images_correctly_detected_per_class / num_gt_imgs_per_class)


def compute_median_rank_at_k(tp_fp_list, k):
    """Computes MedianRank@k, where k is the top-scoring labels.
    Args:
        tp_fp_list: a list of numpy arrays; each numpy array corresponds to the all
            detection on a single image, where the detections are sorted by score in
            descending order. Further, each numpy array element can have boolean or
            float values. True positive elements have either value >0.0 or True;
            any other value is considered false positive.
        k: number of top-scoring proposals to take.
    Returns:
        median_rank: median rank of all true positive proposals among top k by score.
    """
    ranks = []
    for i in range(len(tp_fp_list)):
        ranks.append(np.where(tp_fp_list[i][0:min(k, tp_fp_list[i].shape[0])] > 0)[0])
    concatenated_ranks = np.concatenate(ranks)
    return np.median(concatenated_ranks)


def compute_recall_at_k(tp_fp_list, num_gt, k):
    """Computes Recall@k, MedianRank@k, where k is the top-scoring labels.
    Args:
        tp_fp_list: a list of numpy arrays; each numpy array corresponds to the all
            detection on a single image, where the detections are sorted by score in
            descending order. Further, each numpy array element can have boolean or
            float values. True positive elements have either value >0.0 or True;
            any other value is considered false positive.
        num_gt: number of groundtruth anotations.
        k: number of top-scoring proposals to take.
    Returns:
        recall: recall evaluated on the top k by score detections.
    """

    tp_fp_eval = []
    for i in range(len(tp_fp_list)):
        tp_fp_eval.append(tp_fp_list[i][0:min(k, tp_fp_list[i].shape[0])])

    tp_fp_eval = np.concatenate(tp_fp_eval)

    return np.sum(tp_fp_eval) / num_gt