File size: 4,423 Bytes
fa84113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
""" Detection dataset

Hacked together by Ross Wightman
"""
import torch.utils.data as data
import numpy as np
import albumentations as A
import torch

from PIL import Image
from .parsers import create_parser


class DetectionDatset(data.Dataset):
    """`Object Detection Dataset. Use with parsers for COCO, VOC, and OpenImages.
    Args:
        parser (string, Parser):
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.ToTensor``

    """

    def __init__(self, data_dir, parser=None, parser_kwargs=None, transform=None, transforms=None):
        super(DetectionDatset, self).__init__()
        parser_kwargs = parser_kwargs or {}
        self.data_dir = data_dir
        if isinstance(parser, str):
            self._parser = create_parser(parser, **parser_kwargs)
        else:
            assert parser is not None and len(parser.img_ids)
            self._parser = parser
        self._transform = transform
        self._transforms = transforms

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: Tuple (image, annotations (target)).
        """
        img_info = self._parser.img_infos[index]
        target = dict(img_idx=index, img_size=(img_info['width'], img_info['height']))
        if self._parser.has_labels:
            ann = self._parser.get_ann_info(index)
            target.update(ann)
        img_path = self.data_dir / img_info['file_name']
        img = Image.open(img_path).convert('RGB')
        if self.transforms is not None:
            img = torch.as_tensor(np.array(img), dtype=torch.uint8)
            voc_boxes = []
            for coord in target['bbox']:
                xmin = coord[1]
                ymin = coord[0]
                xmax = coord[3]
                ymax = coord[2]
                if xmin<1:
                    xmin = 1
                if ymin<1:
                    ymin = 1
                if xmax>=img.shape[1]-1:
                    xmax = img.shape[1]-1
                if ymax>=img.shape[0]-1:
                    ymax = img.shape[0]-1
                voc_boxes.append([xmin, ymin, xmax, ymax])
            transformed = self.transforms(image=np.array(img), bbox_classes=target['cls'], bboxes=voc_boxes)
            img = torch.as_tensor(transformed['image'], dtype=torch.uint8)
            target['bbox'] = []
            for coord in transformed['bboxes']:
                ymin = int(coord[1])
                xmin = int(coord[0])
                ymax = int(coord[3])
                xmax = int(coord[2])
                target['bbox'].append([ymin, xmin, ymax, xmax])
            target['bbox'] = np.array(target['bbox'], dtype=np.float32)
            target['cls'] = np.array(transformed['bbox_classes'])
            img = Image.fromarray(np.array(img).astype('uint8'), 'RGB')
            target['img_size'] = img.size
            
        if self.transform is not None:
            img, target = self.transform(img, target)

        return img, target

    def __len__(self):
        return len(self._parser.img_ids)

    @property
    def parser(self):
        return self._parser

    @property
    def transform(self):
        return self._transform

    @transform.setter
    def transform(self, t):
        self._transform = t

    @property
    def transforms(self):
        return self._transforms

    @transforms.setter
    def transforms(self, t):
        self._transforms = t

class SkipSubset(data.Dataset):
    r"""
    Subset of a dataset at specified indices.

    Arguments:
        dataset (Dataset): The whole Dataset
        n (int): skip rate (select every nth)
    """
    def __init__(self, dataset, n=2):
        self.dataset = dataset
        assert n >= 1
        self.indices = np.arange(len(dataset))[::n]

    def __getitem__(self, idx):
        return self.dataset[self.indices[idx]]

    def __len__(self):
        return len(self.indices)

    @property
    def parser(self):
        return self.dataset.parser

    @property
    def transform(self):
        return self.dataset.transform

    @transform.setter
    def transform(self, t):
        self.dataset.transform = t

    @property
    def transforms(self):
        return self.dataset.transforms

    @transforms.setter
    def transforms(self, t):
        self.dataset.transforms = t