Commit
Β·
93109de
0
Parent(s):
Initialize project and create a first sentiment classifier prototype with streamlit and a pretrained bert model
Browse files- .gitignore +4 -0
- README.md +1 -0
- data/.gitkeep +0 -0
- models/__init__.py +0 -0
- models/models.py +21 -0
- notebooks/classify_sentiment_with_bert.ipynb +0 -0
- requirements.txt +5 -0
- sentiment_analysis.py +46 -0
- sentiment_classificator.py +34 -0
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
*.csv
|
| 3 |
+
.DS_Store
|
| 4 |
+
*.h5
|
README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# bert-sentiment-analysis
|
data/.gitkeep
ADDED
|
File without changes
|
models/__init__.py
ADDED
|
File without changes
|
models/models.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Module to load the project models
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import tensorflow_text
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
import tensorflow_hub as hub
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def load_sentiments_model():
|
| 14 |
+
"""
|
| 15 |
+
Load pretrained model
|
| 16 |
+
"""
|
| 17 |
+
model_path = os.path.join(CURRENT_DIR, "sentiments_bert_model.h5")
|
| 18 |
+
model = tf.keras.models.load_model(
|
| 19 |
+
model_path, custom_objects={"KerasLayer": hub.KerasLayer}, compile=False
|
| 20 |
+
)
|
| 21 |
+
return model
|
notebooks/classify_sentiment_with_bert.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas
|
| 2 |
+
jupyter
|
| 3 |
+
numpy
|
| 4 |
+
tensorflow
|
| 5 |
+
tensorflow-text
|
sentiment_analysis.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Sentiment analysis streamlit webpage
|
| 3 |
+
"""
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from sentiment_classificator import classify_sentiment
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_representative_emoji(sentiment: str) -> str:
|
| 9 |
+
"""
|
| 10 |
+
From a sentiment return the representative emoji
|
| 11 |
+
"""
|
| 12 |
+
if sentiment == 'positive':
|
| 13 |
+
return "π"
|
| 14 |
+
elif sentiment == 'negative':
|
| 15 |
+
return "π"
|
| 16 |
+
else:
|
| 17 |
+
return "π"
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def main() -> None:
|
| 21 |
+
"""
|
| 22 |
+
Build streamlit page for sentiment analysis
|
| 23 |
+
"""
|
| 24 |
+
st.title("Sentiment Classification")
|
| 25 |
+
|
| 26 |
+
# Initialize session state variables
|
| 27 |
+
if 'enter_pressed' not in st.session_state:
|
| 28 |
+
st.session_state.enter_pressed = False
|
| 29 |
+
|
| 30 |
+
# Input text box and button
|
| 31 |
+
input_text = st.text_input("Enter your text here:")
|
| 32 |
+
button_clicked = st.button("Classify Sentiment")
|
| 33 |
+
|
| 34 |
+
if button_clicked or st.session_state.enter_pressed:
|
| 35 |
+
# Process the input text with the sentiment classifier
|
| 36 |
+
sentiment = classify_sentiment(input_text)
|
| 37 |
+
|
| 38 |
+
# Get the representative emoji
|
| 39 |
+
emoji = get_representative_emoji(sentiment)
|
| 40 |
+
|
| 41 |
+
# Show the response and emoji
|
| 42 |
+
st.write(f"Sentiment: {sentiment.capitalize()} {emoji}")
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
if __name__ == "__main__":
|
| 46 |
+
main()
|
sentiment_classificator.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Module to classify text into positive or negative sentiments
|
| 3 |
+
"""
|
| 4 |
+
import sys
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
from models.models import load_sentiments_model
|
| 7 |
+
|
| 8 |
+
sentiments_model = load_sentiments_model()
|
| 9 |
+
MAX_NEG = 0.4
|
| 10 |
+
MIN_POS = 0.6
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def classify_sentiment(input_text: str) -> str:
|
| 14 |
+
"""
|
| 15 |
+
Receives a string and classifies it in positive, negative or none
|
| 16 |
+
"""
|
| 17 |
+
result = tf.sigmoid(sentiments_model(tf.constant([input_text])))
|
| 18 |
+
if result < MAX_NEG:
|
| 19 |
+
return "negative"
|
| 20 |
+
elif result > MIN_POS:
|
| 21 |
+
return "positive"
|
| 22 |
+
else:
|
| 23 |
+
return "-"
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
if __name__ == "__main__":
|
| 27 |
+
if len(sys.argv) < 2:
|
| 28 |
+
print(
|
| 29 |
+
f"Usage: python {sys.argv[0]} <text to classify>")
|
| 30 |
+
sys.exit(1)
|
| 31 |
+
# Get the input string from command line argument
|
| 32 |
+
input_text = sys.argv[1]
|
| 33 |
+
sentiment = classify_sentiment(input_text)
|
| 34 |
+
print("Sentiment of the sentence: ", sentiment)
|