{ "cells": [ { "cell_type": "code", "execution_count": 7, "id": "985f02de", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Employee NameAgeDepartmentSalary
0John31HR108189
1Alice39Engineering100371
2Bob52Marketing90333
3Carol29Sales69356
4David25Finance79835
\n", "
" ], "text/plain": [ " Employee Name Age Department Salary\n", "0 John 31 HR 108189\n", "1 Alice 39 Engineering 100371\n", "2 Bob 52 Marketing 90333\n", "3 Carol 29 Sales 69356\n", "4 David 25 Finance 79835" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import random\n", "import numpy as np\n", "\n", "# Create random data\n", "data = {\n", " 'Employee Name': ['John', 'Alice', 'Bob', 'Carol', 'David'],\n", " 'Age': [random.randint(22, 55) for _ in range(5)],\n", " 'Department': ['HR', 'Engineering', 'Marketing', 'Sales', 'Finance'],\n", " 'Salary': [random.randint(50000, 120000) for _ in range(5)]\n", "}\n", "\n", "# Convert to DataFrame\n", "df = pd.DataFrame(data)\n", "\n", "# Save to Excel\n", "df.to_excel('employee_data.xlsx', index=False)\n", "\n", "# Save to CSV\n", "df.to_csv('employee_data.csv', index=False)\n", "\n", "# Display the created DataFrame\n", "df\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "e6b3ffce", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Excel Data:\n", " Employee Name Age Department Salary\n", "0 John 45 HR 68212\n", "1 Alice 26 Engineering 84012\n", "2 Bob 39 Marketing 111842\n", "3 Carol 31 Sales 96286\n", "4 David 52 Finance 115640\n" ] } ], "source": [ "# Reading the Excel file\n", "df_excel = pd.read_excel('employee_data.xlsx')\n", "\n", "# Display the DataFrame\n", "print(\"Excel Data:\")\n", "print(df_excel)\n" ] }, { "cell_type": "code", "execution_count": 5, "id": "5c83abd8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CSV Data:\n", " Employee Name Age Department Salary\n", "0 John 45 HR 68212\n", "1 Alice 26 Engineering 84012\n", "2 Bob 39 Marketing 111842\n", "3 Carol 31 Sales 96286\n", "4 David 52 Finance 115640\n" ] } ], "source": [ "# Reading the CSV file\n", "df_csv = pd.read_csv('employee_data.csv')\n", "\n", "# Display the DataFrame\n", "print(\"CSV Data:\")\n", "print(df_csv)\n" ] }, { "cell_type": "code", "execution_count": 6, "id": "fe7dc33a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Excel Data Loaded Successfully\n", " Employee Name Age Department Salary\n", "0 John 45 HR 68212\n", "1 Alice 26 Engineering 84012\n", "2 Bob 39 Marketing 111842\n", "3 Carol 31 Sales 96286\n", "4 David 52 Finance 115640\n", "CSV Data Loaded Successfully\n", " Employee Name Age Department Salary\n", "0 John 45 HR 68212\n", "1 Alice 26 Engineering 84012\n", "2 Bob 39 Marketing 111842\n", "3 Carol 31 Sales 96286\n", "4 David 52 Finance 115640\n" ] } ], "source": [ "# Try reading the Excel file\n", "try:\n", " df_excel = pd.read_excel('employee_data.xlsx')\n", " print(\"Excel Data Loaded Successfully\")\n", " print(df_excel)\n", "except FileNotFoundError:\n", " print(\"Error: Excel file not found!\")\n", "except Exception as e:\n", " print(f\"Error loading Excel file: {e}\")\n", "\n", "# Try reading the CSV file\n", "try:\n", " df_csv = pd.read_csv('employee_data.csv')\n", " print(\"CSV Data Loaded Successfully\")\n", " print(df_csv)\n", "except FileNotFoundError:\n", " print(\"Error: CSV file not found!\")\n", "except Exception as e:\n", " print(f\"Error loading CSV file: {e}\")\n" ] }, { "cell_type": "code", "execution_count": null, "id": "2543edf6", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }