Update pages/introds.py
Browse files- pages/introds.py +27 -14
pages/introds.py
CHANGED
@@ -46,10 +46,10 @@ custom_css = f"""
|
|
46 |
# Inject CSS into Streamlit app
|
47 |
st.markdown(custom_css, unsafe_allow_html=True)
|
48 |
|
49 |
-
# Header
|
50 |
-
st.markdown("<h1>Welcome to Data Science
|
51 |
|
52 |
-
#
|
53 |
st.markdown(
|
54 |
"""
|
55 |
<div class="division">
|
@@ -81,18 +81,31 @@ st.markdown(
|
|
81 |
unsafe_allow_html=True
|
82 |
)
|
83 |
|
84 |
-
#
|
85 |
-
st.markdown("<h1>Welcome to Deep Learning</h1>", unsafe_allow_html=True)
|
86 |
-
|
87 |
-
# Main content for Deep Learning
|
88 |
st.markdown(
|
89 |
"""
|
90 |
-
<
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
unsafe_allow_html=True
|
98 |
)
|
|
|
46 |
# Inject CSS into Streamlit app
|
47 |
st.markdown(custom_css, unsafe_allow_html=True)
|
48 |
|
49 |
+
# Header Section
|
50 |
+
st.markdown("<h1>Welcome to Data Science and Deep Learning</h1>", unsafe_allow_html=True)
|
51 |
|
52 |
+
# Content for Data Science
|
53 |
st.markdown(
|
54 |
"""
|
55 |
<div class="division">
|
|
|
81 |
unsafe_allow_html=True
|
82 |
)
|
83 |
|
84 |
+
# Content for Deep Learning
|
|
|
|
|
|
|
85 |
st.markdown(
|
86 |
"""
|
87 |
+
<div class="division">
|
88 |
+
<h2>What is Deep Learning?</h2>
|
89 |
+
<p>
|
90 |
+
Deep learning is an artificial intelligence (AI) method that teaches computers to process data in a way inspired by the human brain.
|
91 |
+
Deep learning models can recognize complex patterns in images, text, sounds, and other data to produce accurate insights and predictions.
|
92 |
+
You can use deep learning methods to automate tasks that typically require human intelligence, such as describing images or transcribing sound files into text.
|
93 |
+
</p>
|
94 |
+
<ul>
|
95 |
+
<li><strong>Entertainment:</strong> Companies like Netflix and Spotify recommend relevant content based on user preferences.</li>
|
96 |
+
<li><strong>Natural Language Processing:</strong> Enables machines to understand and process human language, such as in translation or chatbots.</li>
|
97 |
+
<li><strong>Fraud Detection:</strong> Helps detect and prevent fraudulent activities using predictive analytics (e.g., PayPal).</li>
|
98 |
+
</ul>
|
99 |
+
</div>
|
100 |
+
<div class="division">
|
101 |
+
<h2>Key Steps in Deep Learning</h2>
|
102 |
+
<ul>
|
103 |
+
<li><strong>Data Acquisition:</strong> Gather data relevant to the problem you're solving. The amount of data depends on model complexity.</li>
|
104 |
+
<li><strong>Data Preprocessing:</strong> Split the data into training, validation, and test sets, and preprocess it for consistency.</li>
|
105 |
+
<li><strong>Model Building and Training:</strong> Define the neural network architecture and expose it to labeled data for training.</li>
|
106 |
+
</ul>
|
107 |
+
</div>
|
108 |
+
"""
|
109 |
+
,
|
110 |
unsafe_allow_html=True
|
111 |
)
|