ronakreddy18 commited on
Commit
2e3c3df
·
verified ·
1 Parent(s): 3c93f2e

Update pages/introds.py

Browse files
Files changed (1) hide show
  1. pages/introds.py +46 -38
pages/introds.py CHANGED
@@ -1,41 +1,49 @@
1
- import streamlit
2
- import pandas
3
- import numpy
4
- st.markdown("<h1 style='text-align: center; color: Balck;'>DATA SCIENCE INTRODUCTION</h1>", unsafe_allow_html=True)
5
- st.markdown("<h2 style='color: Black;'>What is data science</h2>"
6
-
7
- <div class="section">
8
- <h2>What is Data Science? </h2>
9
- <p>
10
- It combines techniques from statistics, computer science, mathematics, and domain expertise to analyze and interpret data effectively.
11
- In essence, data science transforms raw data into actionable insights, driving smarter decisions across industries.
12
- There are some several types of explanations which are given below :
13
- </p>
14
- <ul>
15
- <li>Analyzing customer reviews to identify product sentiment</li>
16
- <li>Techniques Used: Natural Language Processing (NLP), sentiment analysis.</li>
17
-
18
- <li>Optimizing delivery routes for logistics companies</li>
19
- <li>Techniques Used: Graph algorithms, optimization techniques </li>
20
- </ul>
21
- </div>
22
- <div class="section">
23
- <h2>Few Important steps in DS </h2>
24
- <p>
25
- Data Science has several steps ,such as :
26
- </p>
27
- <ul>
28
- <li><strong>Understanding the given problem:</strong>First thing is you need to understand the given type of problem</li>
29
- <li><strong>Data Collection:</strong> Gather relevant data from various sources to address the defined problem.</li>
30
- <li><strong>Data Cleaning and Preprocessing: </strong> Prepare the raw data for analysis by handling inconsistencies, missing values, and errors. </li>
31
- <li><strong>Exploratory Data Analysis (EDA):</strong>Gain an initial understanding of the datas main characteristics through visualization and summary statistics.</li>
32
- <li><strong> Deployment: </strong Implement the model into a production environment where it can provide actionable insights or make decisions in real-time.> </li>
33
- </ul>
34
- </div>
35
- , unsafe_allow_html=True)
36
-
37
-
38
-
 
 
 
 
 
 
 
 
39
 
40
 
41
 
 
1
+ import streamlit as st # Aliased streamlit as 'st' for consistency
2
+ import pandas as pd
3
+ import numpy as np
4
+
5
+ # Header Section
6
+ st.markdown(
7
+ "<h1 style='text-align: center; color: Black;'>DATA SCIENCE INTRODUCTION</h1>",
8
+ unsafe_allow_html=True
9
+ )
10
+
11
+ # Main Content Section
12
+ st.markdown(
13
+ """
14
+ <h2 style='color: Black;'>What is Data Science</h2>
15
+
16
+ <div class="section">
17
+ <h2>What is Data Science?</h2>
18
+ <p>
19
+ It combines techniques from statistics, computer science, mathematics, and domain expertise to analyze and interpret data effectively.
20
+ In essence, data science transforms raw data into actionable insights, driving smarter decisions across industries.
21
+ There are several types of applications, as explained below:
22
+ </p>
23
+ <ul>
24
+ <li>Analyzing customer reviews to identify product sentiment</li>
25
+ <li>Techniques Used: Natural Language Processing (NLP), sentiment analysis.</li>
26
+ <li>Optimizing delivery routes for logistics companies</li>
27
+ <li>Techniques Used: Graph algorithms, optimization techniques.</li>
28
+ </ul>
29
+ </div>
30
+
31
+ <div class="section">
32
+ <h2>Few Important Steps in Data Science</h2>
33
+ <p>
34
+ Data Science involves several steps, such as:
35
+ </p>
36
+ <ul>
37
+ <li><strong>Understanding the Given Problem:</strong> First, you need to understand the type of problem you are addressing.</li>
38
+ <li><strong>Data Collection:</strong> Gather relevant data from various sources to address the defined problem.</li>
39
+ <li><strong>Data Cleaning and Preprocessing:</strong> Prepare the raw data for analysis by handling inconsistencies, missing values, and errors.</li>
40
+ <li><strong>Exploratory Data Analysis (EDA):</strong> Gain an initial understanding of the data's main characteristics through visualization and summary statistics.</li>
41
+ <li><strong>Deployment:</strong> Implement the model into a production environment where it can provide actionable insights or make decisions in real-time.</li>
42
+ </ul>
43
+ </div>
44
+ """,
45
+ unsafe_allow_html=True
46
+ )
47
 
48
 
49