|
import streamlit as st |
|
|
|
|
|
background_url = "https://cdn.pixabay.com/photo/2023/11/23/17/47/sunset-7704533_1280.jpg" |
|
|
|
|
|
custom_css = f""" |
|
<style> |
|
html, body, [data-testid="stAppViewContainer"] {{ |
|
background: linear-gradient( |
|
rgba(0, 0, 0, 0.6), |
|
rgba(0, 0, 0, 0.6) |
|
), |
|
url("{background_url}") no-repeat center center fixed; |
|
background-size: cover; |
|
font-family: Arial, sans-serif; |
|
color: #ffffff; |
|
}} |
|
h1 {{ |
|
color: #ffffff; |
|
text-align: center; |
|
font-size: 2rem; |
|
margin-top: 2px; |
|
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7); |
|
}} |
|
.division {{ |
|
margin: 20px auto; |
|
padding: 20px; |
|
background: rgba(255, 255, 255, 0.1); |
|
border-radius: 10px; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); |
|
}} |
|
.division h2 {{ |
|
color: #ffffff; |
|
margin-bottom: 10px; |
|
font-size: 2rem; |
|
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.7); |
|
}} |
|
.division p, .division ul li {{ |
|
font-size: 1.2rem; |
|
line-height: 1.7; |
|
}} |
|
</style> |
|
""" |
|
|
|
|
|
st.markdown(custom_css, unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("<h1>Welcome to Data Science Introduction</h1>", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown( |
|
""" |
|
<div class="division"> |
|
<h2>What is Data Science?</h2> |
|
<p> |
|
Data science combines techniques from statistics, computer science, mathematics, and domain expertise |
|
to analyze and interpret data effectively. It transforms raw data into actionable insights, driving smarter |
|
decisions across industries. |
|
</p> |
|
<ul> |
|
<li>Analyzing customer reviews to identify product sentiment</li> |
|
<li>Techniques Used: Natural Language Processing (NLP), sentiment analysis</li> |
|
<li>Optimizing delivery routes for logistics companies</li> |
|
<li>Techniques Used: Graph algorithms, optimization techniques</li> |
|
</ul> |
|
</div> |
|
<div class="division"> |
|
<h2>Key Steps in Data Science</h2> |
|
<p>Data Science involves several steps, such as:</p> |
|
<ul> |
|
<li><strong>Understanding the Problem:</strong> Grasp the problem's nature and define clear objectives.</li> |
|
<li><strong>Data Collection:</strong> Gather relevant data from multiple sources.</li> |
|
<li><strong>Data Cleaning:</strong> Handle inconsistencies, missing values, and prepare data for analysis.</li> |
|
<li><strong>Exploratory Data Analysis (EDA):</strong> Use visualization and summary statistics to understand data.</li> |
|
<li><strong>Model Deployment:</strong> Implement models in a production environment for real-time decision-making.</li> |
|
</ul> |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
st.markdown("<h1>Welcome to Deep Learning</h1>", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown( |
|
""" |
|
<p> |
|
Deep learning is an artificial intelligence (AI) method that teaches computers to process data in a way inspired by the human brain. |
|
Deep learning models can recognize complex patterns in images, text, sounds, and other data to produce accurate insights and predictions. |
|
You can use deep learning methods to automate tasks that typically require human intelligence, |
|
such as describing images or transcribing a sound file into text. |
|
</p> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|