File size: 7,006 Bytes
3d3c84d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 7,
"id": "985f02de",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Employee Name</th>\n",
" <th>Age</th>\n",
" <th>Department</th>\n",
" <th>Salary</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>John</td>\n",
" <td>31</td>\n",
" <td>HR</td>\n",
" <td>108189</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Alice</td>\n",
" <td>39</td>\n",
" <td>Engineering</td>\n",
" <td>100371</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Bob</td>\n",
" <td>52</td>\n",
" <td>Marketing</td>\n",
" <td>90333</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Carol</td>\n",
" <td>29</td>\n",
" <td>Sales</td>\n",
" <td>69356</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>David</td>\n",
" <td>25</td>\n",
" <td>Finance</td>\n",
" <td>79835</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Employee Name Age Department Salary\n",
"0 John 31 HR 108189\n",
"1 Alice 39 Engineering 100371\n",
"2 Bob 52 Marketing 90333\n",
"3 Carol 29 Sales 69356\n",
"4 David 25 Finance 79835"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import random\n",
"import numpy as np\n",
"\n",
"# Create random data\n",
"data = {\n",
" 'Employee Name': ['John', 'Alice', 'Bob', 'Carol', 'David'],\n",
" 'Age': [random.randint(22, 55) for _ in range(5)],\n",
" 'Department': ['HR', 'Engineering', 'Marketing', 'Sales', 'Finance'],\n",
" 'Salary': [random.randint(50000, 120000) for _ in range(5)]\n",
"}\n",
"\n",
"# Convert to DataFrame\n",
"df = pd.DataFrame(data)\n",
"\n",
"# Save to Excel\n",
"df.to_excel('employee_data.xlsx', index=False)\n",
"\n",
"# Save to CSV\n",
"df.to_csv('employee_data.csv', index=False)\n",
"\n",
"# Display the created DataFrame\n",
"df\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e6b3ffce",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Excel Data:\n",
" Employee Name Age Department Salary\n",
"0 John 45 HR 68212\n",
"1 Alice 26 Engineering 84012\n",
"2 Bob 39 Marketing 111842\n",
"3 Carol 31 Sales 96286\n",
"4 David 52 Finance 115640\n"
]
}
],
"source": [
"# Reading the Excel file\n",
"df_excel = pd.read_excel('employee_data.xlsx')\n",
"\n",
"# Display the DataFrame\n",
"print(\"Excel Data:\")\n",
"print(df_excel)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "5c83abd8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CSV Data:\n",
" Employee Name Age Department Salary\n",
"0 John 45 HR 68212\n",
"1 Alice 26 Engineering 84012\n",
"2 Bob 39 Marketing 111842\n",
"3 Carol 31 Sales 96286\n",
"4 David 52 Finance 115640\n"
]
}
],
"source": [
"# Reading the CSV file\n",
"df_csv = pd.read_csv('employee_data.csv')\n",
"\n",
"# Display the DataFrame\n",
"print(\"CSV Data:\")\n",
"print(df_csv)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fe7dc33a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Excel Data Loaded Successfully\n",
" Employee Name Age Department Salary\n",
"0 John 45 HR 68212\n",
"1 Alice 26 Engineering 84012\n",
"2 Bob 39 Marketing 111842\n",
"3 Carol 31 Sales 96286\n",
"4 David 52 Finance 115640\n",
"CSV Data Loaded Successfully\n",
" Employee Name Age Department Salary\n",
"0 John 45 HR 68212\n",
"1 Alice 26 Engineering 84012\n",
"2 Bob 39 Marketing 111842\n",
"3 Carol 31 Sales 96286\n",
"4 David 52 Finance 115640\n"
]
}
],
"source": [
"# Try reading the Excel file\n",
"try:\n",
" df_excel = pd.read_excel('employee_data.xlsx')\n",
" print(\"Excel Data Loaded Successfully\")\n",
" print(df_excel)\n",
"except FileNotFoundError:\n",
" print(\"Error: Excel file not found!\")\n",
"except Exception as e:\n",
" print(f\"Error loading Excel file: {e}\")\n",
"\n",
"# Try reading the CSV file\n",
"try:\n",
" df_csv = pd.read_csv('employee_data.csv')\n",
" print(\"CSV Data Loaded Successfully\")\n",
" print(df_csv)\n",
"except FileNotFoundError:\n",
" print(\"Error: CSV file not found!\")\n",
"except Exception as e:\n",
" print(f\"Error loading CSV file: {e}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2543edf6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|