File size: 8,175 Bytes
ed72aac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "0r5hCx60Yv0u"
      },
      "outputs": [],
      "source": [
        "import pandas as pd\n"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "#2. Reading a CSV File"
      ],
      "metadata": {
        "id": "dytrA9JLZJaO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import pandas as pd\n",
        "\n",
        "try:\n",
        "    # Read the CSV file into a DataFrame\n",
        "    df = pd.read_csv(r\"/content/sample_data (1).csv\")\n",
        "    print(df)\n",
        "except FileNotFoundError:\n",
        "    print(\"Error: The file was not found.\")\n",
        "except pd.errors.ParserError:\n",
        "    print(\"Error: There was a problem parsing the CSV file.\")\n",
        "except Exception as e:\n",
        "    print(f\"An unexpected error occurred: {e}\")\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "33v8Kr5LeNYP",
        "outputId": "2d8e6eef-a25e-4c31-deab-80d4d6da35b8"
      },
      "execution_count": 18,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "   ID     Name  Age  Gender           City  Salary\n",
            "0   1    Alice   25  Female       New York   70000\n",
            "1   2      Bob   30    Male    Los Angeles   80000\n",
            "2   3  Charlie   35    Male        Chicago   90000\n",
            "3   4    Diana   28  Female        Houston   75000\n",
            "4   5   Edward   40    Male  San Francisco  100000\n",
            "5   6    Faith   32  Female          Miami   82000\n",
            "6   7   George   45    Male        Seattle  110000\n",
            "7   8   Hannah   29  Female         Boston   72000\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import csv\n",
        "\n",
        "# Path to your CSV file\n",
        "csv_file_path = 'employee_data.csv'\n",
        "\n",
        "# Function to read CSV using csv module\n",
        "def read_csv_using_csv_module():\n",
        "    try:\n",
        "        with open(r\"/content/sample_data (1).csv\") as file:\n",
        "            csv_reader = csv.DictReader(file)  # Use DictReader to access columns by name\n",
        "            print(\"Reading using csv module:\")\n",
        "            for row in csv_reader:\n",
        "                try:\n",
        "                    # Ensuring data types are correct (Age should be an integer, Salary should be numeric)\n",
        "                    row['Age'] = int(row['Age'])  # Convert Age to integer\n",
        "                    row['Salary'] = float(row['Salary'])  # Convert Salary to float\n",
        "                    print(row)\n",
        "                except ValueError as ve:\n",
        "                    print(f\"Error: Invalid data type in row {row}. Error: {ve}\")\n",
        "    except FileNotFoundError:\n",
        "        print(\"Error: The file was not found.\")\n",
        "    except csv.Error as e:\n",
        "        print(f\"Error reading the CSV file with csv module: {e}\")\n",
        "    except Exception as e:\n",
        "        print(f\"An unexpected error occurred with csv module: {e}\")\n",
        "\n",
        "# Call the function to read using csv module\n",
        "read_csv_using_csv_module()\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "xvRO2NmZkCPJ",
        "outputId": "abdb3575-5522-42d2-96d2-69231b60b6a7"
      },
      "execution_count": 20,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Reading using csv module:\n",
            "{'ID': '1', 'Name': 'Alice', 'Age': 25, 'Gender': 'Female', 'City': 'New York', 'Salary': 70000.0}\n",
            "{'ID': '2', 'Name': 'Bob', 'Age': 30, 'Gender': 'Male', 'City': 'Los Angeles', 'Salary': 80000.0}\n",
            "{'ID': '3', 'Name': 'Charlie', 'Age': 35, 'Gender': 'Male', 'City': 'Chicago', 'Salary': 90000.0}\n",
            "{'ID': '4', 'Name': 'Diana', 'Age': 28, 'Gender': 'Female', 'City': 'Houston', 'Salary': 75000.0}\n",
            "{'ID': '5', 'Name': 'Edward', 'Age': 40, 'Gender': 'Male', 'City': 'San Francisco', 'Salary': 100000.0}\n",
            "{'ID': '6', 'Name': 'Faith', 'Age': 32, 'Gender': 'Female', 'City': 'Miami', 'Salary': 82000.0}\n",
            "{'ID': '7', 'Name': 'George', 'Age': 45, 'Gender': 'Male', 'City': 'Seattle', 'Salary': 110000.0}\n",
            "{'ID': '8', 'Name': 'Hannah', 'Age': 29, 'Gender': 'Female', 'City': 'Boston', 'Salary': 72000.0}\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Using pandas for Reading and Handling Errors"
      ],
      "metadata": {
        "id": "oXkmSf5lkjiP"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import pandas as pd\n",
        "\n",
        "# Path to your CSV file\n",
        "csv_file_path = r\"/content/sample_data (1).csv\"\n",
        "\n",
        "# Function to read CSV using pandas\n",
        "def read_csv_using_pandas():\n",
        "    try:\n",
        "        # Read the CSV file into a pandas DataFrame\n",
        "        df = pd.read_csv(r\"/content/sample_data (1).csv\")\n",
        "        print(\"\\nReading using pandas:\")\n",
        "\n",
        "        # Ensure that the 'Age' and 'Salary' columns are correctly typed\n",
        "        df['Age'] = pd.to_numeric(df['Age'], errors='raise')  # Ensures Age is numeric\n",
        "        df['Salary'] = pd.to_numeric(df['Salary'], errors='raise')  # Ensures Salary is numeric\n",
        "\n",
        "        # Display the DataFrame\n",
        "        print(df)\n",
        "\n",
        "    except FileNotFoundError:\n",
        "        print(\"Error: The file was not found.\")\n",
        "    except pd.errors.ParserError:\n",
        "        print(\"Error: There was a problem parsing the CSV file with pandas.\")\n",
        "    except ValueError as ve:\n",
        "        print(f\"Error: Invalid data type in the CSV file. {ve}\")\n",
        "    except Exception as e:\n",
        "        print(f\"An unexpected error occurred with pandas: {e}\")\n",
        "\n",
        "# Call the function to read using pandas\n",
        "read_csv_using_pandas()\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "SItXSSqbkpKr",
        "outputId": "9e6c4168-bc01-49d8-eabd-18dacab7e3c9"
      },
      "execution_count": 21,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\n",
            "Reading using pandas:\n",
            "   ID     Name  Age  Gender           City  Salary\n",
            "0   1    Alice   25  Female       New York   70000\n",
            "1   2      Bob   30    Male    Los Angeles   80000\n",
            "2   3  Charlie   35    Male        Chicago   90000\n",
            "3   4    Diana   28  Female        Houston   75000\n",
            "4   5   Edward   40    Male  San Francisco  100000\n",
            "5   6    Faith   32  Female          Miami   82000\n",
            "6   7   George   45    Male        Seattle  110000\n",
            "7   8   Hannah   29  Female         Boston   72000\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "L0TGXiLsk0yi"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}