Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,17 @@ import streamlit as st
|
|
3 |
import PyPDF2
|
4 |
import matplotlib.pyplot as plt
|
5 |
from io import BytesIO
|
6 |
-
from llama_index
|
7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
9 |
-
import
|
|
|
|
|
|
|
10 |
|
11 |
# Configure Hugging Face model
|
12 |
-
|
13 |
-
|
14 |
|
15 |
def write_to_file(content, filename="./files/test.pdf"):
|
16 |
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
@@ -23,11 +26,11 @@ def ingest_documents():
|
|
23 |
return documents
|
24 |
|
25 |
def load_data(documents):
|
26 |
-
index = VectorStoreIndex.from_documents(documents)
|
27 |
return index
|
28 |
|
29 |
def generate_summary(index, document_text):
|
30 |
-
query_engine = index.as_query_engine()
|
31 |
response = query_engine.query(f"""
|
32 |
You are a financial analyst. Your task is to provide a comprehensive summary of the given financial document.
|
33 |
Analyze the following document and summarize it:
|
@@ -41,7 +44,7 @@ def generate_summary(index, document_text):
|
|
41 |
5. Future outlook or forecasts
|
42 |
6. Any notable financial risks or opportunities
|
43 |
|
44 |
-
Provide a clear, concise, and professional summary
|
45 |
""")
|
46 |
return response.response
|
47 |
|
|
|
3 |
import PyPDF2
|
4 |
import matplotlib.pyplot as plt
|
5 |
from io import BytesIO
|
6 |
+
from llama_index import VectorStoreIndex, SimpleDirectoryReader
|
7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
9 |
+
import dotenv
|
10 |
+
|
11 |
+
# Load environment variables
|
12 |
+
dotenv.load_dotenv()
|
13 |
|
14 |
# Configure Hugging Face model
|
15 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
16 |
+
llm_model = HuggingFaceLLM(model_name="sarvamai/sarvam-2b-v0.5", api_token=os.getenv("HUGGINGFACE_API_KEY"))
|
17 |
|
18 |
def write_to_file(content, filename="./files/test.pdf"):
|
19 |
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
|
|
26 |
return documents
|
27 |
|
28 |
def load_data(documents):
|
29 |
+
index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
|
30 |
return index
|
31 |
|
32 |
def generate_summary(index, document_text):
|
33 |
+
query_engine = index.as_query_engine(llm_model=llm_model)
|
34 |
response = query_engine.query(f"""
|
35 |
You are a financial analyst. Your task is to provide a comprehensive summary of the given financial document.
|
36 |
Analyze the following document and summarize it:
|
|
|
44 |
5. Future outlook or forecasts
|
45 |
6. Any notable financial risks or opportunities
|
46 |
|
47 |
+
Provide a clear, concise, and professional summary.
|
48 |
""")
|
49 |
return response.response
|
50 |
|