# Shree KRISHNAya Namaha # Differentiable warper implemented in PyTorch. Warping is done on batches. # Tested on PyTorch 1.8.1 # Author: Nagabhushan S N # Last Modified: 27/09/2021 # Code from https://github.com/NagabhushanSN95/Pose-Warping import datetime import time import traceback from pathlib import Path from typing import Tuple, Optional import numpy # import skimage.io import torch import torch.nn.functional as F from einops import rearrange, repeat # import Imath # import OpenEXR import pdb class Warper: def __init__(self, resolution: tuple = None): self.resolution = resolution def forward_warp(self, frame1: torch.Tensor, mask1: Optional[torch.Tensor], depth1: torch.Tensor, transformation1: torch.Tensor, transformation2: torch.Tensor, intrinsic1: torch.Tensor, intrinsic2: Optional[torch.Tensor], is_image=True) -> \ Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Given a frame1 and global transformations transformation1 and transformation2, warps frame1 to next view using bilinear splatting. All arrays should be torch tensors with batch dimension and channel first :param frame1: (b, 3, h, w). If frame1 is not in the range [-1, 1], either set is_image=False when calling bilinear_splatting on frame within this function, or modify clipping in bilinear_splatting() method accordingly. :param mask1: (b, 1, h, w) - 1 for known, 0 for unknown. Optional :param depth1: (b, 1, h, w) :param transformation1: (b, 4, 4) extrinsic transformation matrix of first view: [R, t; 0, 1] :param transformation2: (b, 4, 4) extrinsic transformation matrix of second view: [R, t; 0, 1] :param intrinsic1: (b, 3, 3) camera intrinsic matrix :param intrinsic2: (b, 3, 3) camera intrinsic matrix. Optional """ self.device = frame1.device if self.resolution is not None: assert frame1.shape[2:4] == self.resolution b, c, h, w = frame1.shape if mask1 is None: mask1 = torch.ones(size=(b, 1, h, w)).to(frame1) if intrinsic2 is None: intrinsic2 = intrinsic1.clone() assert frame1.shape == (b, 3, h, w) or frame1.shape == (b, 2, h, w) # flow b2hw assert mask1.shape == (b, 1, h, w) assert depth1.shape == (b, 1, h, w) assert transformation1.shape == (b, 4, 4) assert transformation2.shape == (b, 4, 4) assert intrinsic1.shape == (b, 3, 3) assert intrinsic2.shape == (b, 3, 3) frame1 = frame1.to(self.device) mask1 = mask1.to(self.device) depth1 = depth1.to(self.device) transformation1 = transformation1.to(self.device) transformation2 = transformation2.to(self.device) intrinsic1 = intrinsic1.to(self.device) intrinsic2 = intrinsic2.to(self.device) trans_points1 = self.compute_transformed_points(depth1, transformation1, transformation2, intrinsic1, intrinsic2) # trans_coordinates = trans_points1[:, :, :2, 0] / trans_points1[:, :, 2:3, 0] trans_coordinates = trans_points1[:, :, :, :2, 0] / (trans_points1[:, :, :, 2:3, 0]+1e-7) trans_depth1 = rearrange(trans_points1[:, :, :, 2:3, 0], "b h w c -> b c h w") grid = self.create_grid(b, h, w).to(trans_coordinates) flow12 = rearrange(trans_coordinates, "b h w c -> b c h w") - grid warped_frame2, mask2 = self.bilinear_splatting(frame1, mask1, trans_depth1, flow12, None, is_image=is_image) warped_depth2 = self.bilinear_splatting(trans_depth1, mask1, trans_depth1, flow12, None, is_image=False)[0] # [0][:, :, 0] return warped_frame2, mask2, warped_depth2, flow12 def forward_warp_displacement(self, depth1: torch.Tensor, flow1: torch.Tensor, transformation1: torch.Tensor, transformation2: torch.Tensor, intrinsic1: torch.Tensor, intrinsic2: Optional[torch.Tensor],): """ Given a frame1 and global transformations transformation1 and transformation2, warps frame1 to next view using bilinear splatting. All arrays should be torch tensors with batch dimension and channel first :param depth1: (b, 1, h, w) :param flow1: (b, 2, h, w) :param transformation1: (b, 4, 4) extrinsic transformation matrix of first view: [R, t; 0, 1] :param transformation2: (b, 4, 4) extrinsic transformation matrix of second view: [R, t; 0, 1] :param intrinsic1: (b, 3, 3) camera intrinsic matrix :param intrinsic2: (b, 3, 3) camera intrinsic matrix. Optional """ self.device = flow1.device if self.resolution is not None: assert flow1.shape[2:4] == self.resolution b, c, h, w = flow1.shape if intrinsic2 is None: intrinsic2 = intrinsic1.clone() assert flow1.shape == (b, 2, h, w) assert depth1.shape == (b, 1, h, w) assert transformation1.shape == (b, 4, 4) assert transformation2.shape == (b, 4, 4) assert intrinsic1.shape == (b, 3, 3) assert intrinsic2.shape == (b, 3, 3) depth1 = depth1.to(self.device) flow1 = flow1.to(self.device) transformation1 = transformation1.to(self.device) transformation2 = transformation2.to(self.device) intrinsic1 = intrinsic1.to(self.device) intrinsic2 = intrinsic2.to(self.device) trans_points1 = self.compute_transformed_points(depth1, transformation1, transformation2, intrinsic1, intrinsic2) trans_coordinates1 = trans_points1[:, :, :, :2, 0] / (trans_points1[:, :, :, 2:3, 0]+1e-7) trans_points2 = self.compute_transformed_points(depth1, transformation1, transformation2, intrinsic1, intrinsic2, flow1) trans_coordinates2 = trans_points2[:, :, :, :2, 0] / (trans_points2[:, :, :, 2:3, 0]+1e-7) flow12_displacement = rearrange(trans_coordinates2 - trans_coordinates1, "b h w c -> b c h w") return flow12_displacement def compute_transformed_points(self, depth1: torch.Tensor, transformation1: torch.Tensor, transformation2: torch.Tensor, intrinsic1: torch.Tensor, intrinsic2: Optional[torch.Tensor], flow1: Optional[torch.Tensor]=None): """ Computes transformed position for each pixel location """ if self.resolution is not None: assert depth1.shape[2:4] == self.resolution b, _, h, w = depth1.shape if intrinsic2 is None: intrinsic2 = intrinsic1.clone() transformation = torch.bmm(transformation2, torch.linalg.inv(transformation1)).to(transformation1.dtype) # (b, 4, 4) x1d = torch.arange(0, w)[None] y1d = torch.arange(0, h)[:, None] x2d = x1d.repeat([h, 1]).to(depth1) # (h, w) y2d = y1d.repeat([1, w]).to(depth1) # (h, w) ones_2d = torch.ones(size=(h, w)).to(depth1) # (h, w) ones_4d = ones_2d[None, :, :, None, None].repeat([b, 1, 1, 1, 1]) # (b, h, w, 1, 1) if flow1 is not None: x4d = repeat(x2d[None, :, :, None], '1 h w c -> b h w c', b=b) y4d = repeat(y2d[None, :, :, None], '1 h w c -> b h w c', b=b) flow1_x4d = rearrange(flow1[:,:1].detach().clone(), "b c h w -> b h w c") flow1_y4d = rearrange(flow1[:,1:].detach().clone(), "b c h w -> b h w c") x4d = x4d + flow1_x4d y4d = y4d + flow1_y4d pos_vectors_homo = torch.stack([x4d, y4d, ones_4d.squeeze(-1)], dim=3) # (b, h, w, 3, 1) else: pos_vectors_homo = torch.stack([x2d, y2d, ones_2d], dim=2)[None, :, :, :, None] # (1, h, w, 3, 1) intrinsic1_inv = torch.linalg.inv(intrinsic1) # (b, 3, 3) intrinsic1_inv_4d = intrinsic1_inv[:, None, None] # (b, 1, 1, 3, 3) intrinsic2_4d = intrinsic2[:, None, None] # (b, 1, 1, 3, 3) depth_4d = depth1[:, 0][:, :, :, None, None] # (b, h, w, 1, 1) trans_4d = transformation[:, None, None] # (b, 1, 1, 4, 4) unnormalized_pos = torch.matmul(intrinsic1_inv_4d, pos_vectors_homo).to(transformation1.dtype) # (b, h, w, 3, 1) world_points = depth_4d * unnormalized_pos # (b, h, w, 3, 1) world_points_homo = torch.cat([world_points, ones_4d], dim=3) # (b, h, w, 4, 1) trans_world_homo = torch.matmul(trans_4d, world_points_homo).to(transformation1.dtype) # (b, h, w, 4, 1) trans_world = trans_world_homo[:, :, :, :3] # (b, h, w, 3, 1) trans_norm_points = torch.matmul(intrinsic2_4d, trans_world).to(transformation1.dtype) # (b, h, w, 3, 1) return trans_norm_points def bilinear_splatting(self, frame1: torch.Tensor, mask1: Optional[torch.Tensor], depth1: torch.Tensor, flow12: torch.Tensor, flow12_mask: Optional[torch.Tensor], is_image: bool = False) -> \ Tuple[torch.Tensor, torch.Tensor]: """ Bilinear splatting :param frame1: (b,c,h,w) :param mask1: (b,1,h,w): 1 for known, 0 for unknown. Optional :param depth1: (b,1,h,w) :param flow12: (b,2,h,w) :param flow12_mask: (b,1,h,w): 1 for valid flow, 0 for invalid flow. Optional :param is_image: if true, output will be clipped to (-1,1) range :return: warped_frame2: (b,c,h,w) mask2: (b,1,h,w): 1 for known and 0 for unknown """ if self.resolution is not None: assert frame1.shape[2:4] == self.resolution b, c, h, w = frame1.shape if mask1 is None: mask1 = torch.ones(size=(b, 1, h, w)).to(frame1) if flow12_mask is None: flow12_mask = torch.ones(size=(b, 1, h, w)).to(flow12) grid = self.create_grid(b, h, w).to(frame1) trans_pos = flow12 + grid trans_pos_offset = trans_pos + 1 trans_pos_floor = torch.floor(trans_pos_offset).long() trans_pos_ceil = torch.ceil(trans_pos_offset).long() trans_pos_offset = torch.stack([ torch.clamp(trans_pos_offset[:, 0], min=0, max=w + 1), torch.clamp(trans_pos_offset[:, 1], min=0, max=h + 1)], dim=1) trans_pos_floor = torch.stack([ torch.clamp(trans_pos_floor[:, 0], min=0, max=w + 1), torch.clamp(trans_pos_floor[:, 1], min=0, max=h + 1)], dim=1) trans_pos_ceil = torch.stack([ torch.clamp(trans_pos_ceil[:, 0], min=0, max=w + 1), torch.clamp(trans_pos_ceil[:, 1], min=0, max=h + 1)], dim=1) prox_weight_nw = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \ (1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1])) prox_weight_sw = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \ (1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1])) prox_weight_ne = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \ (1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1])) prox_weight_se = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \ (1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1])) sat_depth1 = torch.clamp(depth1, min=0, max=1000) log_depth1 = torch.log(1 + sat_depth1) depth_weights = torch.exp(log_depth1 / log_depth1.max() * 50) weight_nw = torch.moveaxis(prox_weight_nw * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2]) weight_sw = torch.moveaxis(prox_weight_sw * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2]) weight_ne = torch.moveaxis(prox_weight_ne * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2]) weight_se = torch.moveaxis(prox_weight_se * mask1 * flow12_mask / depth_weights, [0, 1, 2, 3], [0, 3, 1, 2]) warped_frame = torch.zeros(size=(b, h + 2, w + 2, c), dtype=torch.float32).to(frame1) warped_weights = torch.zeros(size=(b, h + 2, w + 2, 1), dtype=torch.float32).to(frame1) frame1_cl = torch.moveaxis(frame1, [0, 1, 2, 3], [0, 3, 1, 2]) batch_indices = torch.arange(b)[:, None, None].to(frame1.device) warped_frame.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]), frame1_cl * weight_nw, accumulate=True) warped_frame.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]), frame1_cl * weight_sw, accumulate=True) warped_frame.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]), frame1_cl * weight_ne, accumulate=True) warped_frame.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]), frame1_cl * weight_se, accumulate=True) warped_weights.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_floor[:, 0]), weight_nw, accumulate=True) warped_weights.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]), weight_sw, accumulate=True) warped_weights.index_put_((batch_indices, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]), weight_ne, accumulate=True) warped_weights.index_put_((batch_indices, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]), weight_se, accumulate=True) warped_frame_cf = torch.moveaxis(warped_frame, [0, 1, 2, 3], [0, 2, 3, 1]) warped_weights_cf = torch.moveaxis(warped_weights, [0, 1, 2, 3], [0, 2, 3, 1]) cropped_warped_frame = warped_frame_cf[:, :, 1:-1, 1:-1] cropped_weights = warped_weights_cf[:, :, 1:-1, 1:-1] mask = cropped_weights > 0 zero_value = -1 if is_image else 0 zero_tensor = torch.tensor(zero_value, dtype=frame1.dtype, device=frame1.device) warped_frame2 = torch.where(mask, cropped_warped_frame / cropped_weights, zero_tensor) mask2 = mask.to(frame1) if is_image: assert warped_frame2.min() >= -1.1 # Allow for rounding errors assert warped_frame2.max() <= 1.1 warped_frame2 = torch.clamp(warped_frame2, min=-1, max=1) return warped_frame2, mask2 def bilinear_interpolation(self, frame2: torch.Tensor, mask2: Optional[torch.Tensor], flow12: torch.Tensor, flow12_mask: Optional[torch.Tensor], is_image: bool = False) -> \ Tuple[torch.Tensor, torch.Tensor]: """ Bilinear interpolation :param frame2: (b, c, h, w) :param mask2: (b, 1, h, w): 1 for known, 0 for unknown. Optional :param flow12: (b, 2, h, w) :param flow12_mask: (b, 1, h, w): 1 for valid flow, 0 for invalid flow. Optional :param is_image: if true, output will be clipped to (-1,1) range :return: warped_frame1: (b, c, h, w) mask1: (b, 1, h, w): 1 for known and 0 for unknown """ if self.resolution is not None: assert frame2.shape[2:4] == self.resolution b, c, h, w = frame2.shape if mask2 is None: mask2 = torch.ones(size=(b, 1, h, w)).to(frame2) if flow12_mask is None: flow12_mask = torch.ones(size=(b, 1, h, w)).to(flow12) grid = self.create_grid(b, h, w).to(frame2) trans_pos = flow12 + grid trans_pos_offset = trans_pos + 1 trans_pos_floor = torch.floor(trans_pos_offset).long() trans_pos_ceil = torch.ceil(trans_pos_offset).long() trans_pos_offset = torch.stack([ torch.clamp(trans_pos_offset[:, 0], min=0, max=w + 1), torch.clamp(trans_pos_offset[:, 1], min=0, max=h + 1)], dim=1) trans_pos_floor = torch.stack([ torch.clamp(trans_pos_floor[:, 0], min=0, max=w + 1), torch.clamp(trans_pos_floor[:, 1], min=0, max=h + 1)], dim=1) trans_pos_ceil = torch.stack([ torch.clamp(trans_pos_ceil[:, 0], min=0, max=w + 1), torch.clamp(trans_pos_ceil[:, 1], min=0, max=h + 1)], dim=1) prox_weight_nw = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \ (1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1])) prox_weight_sw = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \ (1 - (trans_pos_offset[:, 0:1] - trans_pos_floor[:, 0:1])) prox_weight_ne = (1 - (trans_pos_offset[:, 1:2] - trans_pos_floor[:, 1:2])) * \ (1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1])) prox_weight_se = (1 - (trans_pos_ceil[:, 1:2] - trans_pos_offset[:, 1:2])) * \ (1 - (trans_pos_ceil[:, 0:1] - trans_pos_offset[:, 0:1])) weight_nw = torch.moveaxis(prox_weight_nw * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2]) weight_sw = torch.moveaxis(prox_weight_sw * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2]) weight_ne = torch.moveaxis(prox_weight_ne * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2]) weight_se = torch.moveaxis(prox_weight_se * flow12_mask, [0, 1, 2, 3], [0, 3, 1, 2]) frame2_offset = F.pad(frame2, [1, 1, 1, 1]) mask2_offset = F.pad(mask2, [1, 1, 1, 1]) bi = torch.arange(b)[:, None, None] f2_nw = frame2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_floor[:, 0]] f2_sw = frame2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]] f2_ne = frame2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]] f2_se = frame2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]] m2_nw = mask2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_floor[:, 0]] m2_sw = mask2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_floor[:, 0]] m2_ne = mask2_offset[bi, :, trans_pos_floor[:, 1], trans_pos_ceil[:, 0]] m2_se = mask2_offset[bi, :, trans_pos_ceil[:, 1], trans_pos_ceil[:, 0]] nr = weight_nw * f2_nw * m2_nw + weight_sw * f2_sw * m2_sw + \ weight_ne * f2_ne * m2_ne + weight_se * f2_se * m2_se dr = weight_nw * m2_nw + weight_sw * m2_sw + weight_ne * m2_ne + weight_se * m2_se zero_value = -1 if is_image else 0 zero_tensor = torch.tensor(zero_value, dtype=nr.dtype, device=nr.device) warped_frame1 = torch.where(dr > 0, nr / dr, zero_tensor) mask1 = (dr > 0).to(frame2) # Convert to channel first warped_frame1 = torch.moveaxis(warped_frame1, [0, 1, 2, 3], [0, 2, 3, 1]) mask1 = torch.moveaxis(mask1, [0, 1, 2, 3], [0, 2, 3, 1]) if is_image: assert warped_frame1.min() >= -1.1 # Allow for rounding errors assert warped_frame1.max() <= 1.1 warped_frame1 = torch.clamp(warped_frame1, min=-1, max=1) return warped_frame1, mask1 @staticmethod def create_grid(b, h, w): x_1d = torch.arange(0, w)[None] y_1d = torch.arange(0, h)[:, None] x_2d = x_1d.repeat([h, 1]) y_2d = y_1d.repeat([1, w]) grid = torch.stack([x_2d, y_2d], dim=0) batch_grid = grid[None].repeat([b, 1, 1, 1]) return batch_grid # @staticmethod # def read_image(path: Path) -> torch.Tensor: # image = skimage.io.imread(path.as_posix()) # return image # @staticmethod # def read_depth(path: Path) -> torch.Tensor: # if path.suffix == '.png': # depth = skimage.io.imread(path.as_posix()) # elif path.suffix == '.npy': # depth = numpy.load(path.as_posix()) # elif path.suffix == '.npz': # with numpy.load(path.as_posix()) as depth_data: # depth = depth_data['depth'] # elif path.suffix == '.exr': # exr_file = OpenEXR.InputFile(path.as_posix()) # raw_bytes = exr_file.channel('B', Imath.PixelType(Imath.PixelType.FLOAT)) # depth_vector = numpy.frombuffer(raw_bytes, dtype=numpy.float32) # height = exr_file.header()['displayWindow'].max.y + 1 - exr_file.header()['displayWindow'].min.y # width = exr_file.header()['displayWindow'].max.x + 1 - exr_file.header()['displayWindow'].min.x # depth = numpy.reshape(depth_vector, (height, width)) # else: # raise RuntimeError(f'Unknown depth format: {path.suffix}') # return depth # @staticmethod # def camera_intrinsic_transform(capture_width=1920, capture_height=1080, patch_start_point: tuple = (0, 0)): # start_y, start_x = patch_start_point # camera_intrinsics = numpy.eye(4) # camera_intrinsics[0, 0] = 2100 # camera_intrinsics[0, 2] = capture_width / 2.0 - start_x # camera_intrinsics[1, 1] = 2100 # camera_intrinsics[1, 2] = capture_height / 2.0 - start_y # return camera_intrinsics # @staticmethod # def get_device(device: str): # """ # Returns torch device object # :param device: cpu/gpu0/gpu1 # :return: # """ # if device == 'cpu': # device = torch.device('cpu') # elif device.startswith('gpu') and torch.cuda.is_available(): # gpu_num = int(device[3:]) # device = torch.device(f'cuda:{gpu_num}') # else: # device = torch.device('cpu') # return device