Update inference/flovd_demo.py
Browse files- inference/flovd_demo.py +77 -34
inference/flovd_demo.py
CHANGED
@@ -92,64 +92,107 @@ RESOLUTION_MAP = {
|
|
92 |
"cogvideox-2b": (480, 720),
|
93 |
}
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
def load_cogvideox_flovd_FVSM_controlnet_pipeline(controlnet_path, backbone_path, device, dtype):
|
98 |
-
controlnet_sd = torch.load(controlnet_path, map_location='cpu')['module']
|
99 |
-
|
100 |
tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
|
101 |
-
text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder"
|
102 |
-
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
103 |
-
|
|
|
|
|
|
|
|
|
104 |
scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
controlnet.load_state_dict(controlnet_sd)
|
109 |
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
tokenizer=tokenizer,
|
112 |
text_encoder=text_encoder,
|
113 |
vae=vae,
|
114 |
transformer=transformer,
|
115 |
-
controlnet=controlnet,
|
116 |
scheduler=scheduler,
|
117 |
-
)
|
|
|
|
|
|
|
118 |
|
119 |
return pipe
|
120 |
|
121 |
|
122 |
-
def
|
|
|
|
|
123 |
tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
|
124 |
-
text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder"
|
125 |
-
transformer =
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
if k.startswith("transformer.")
|
135 |
}
|
136 |
-
|
|
|
137 |
|
138 |
-
|
139 |
-
if os.path.exists(other_block_path):
|
140 |
-
tensor_dict = load_file(other_block_path)
|
141 |
-
for block_name, param in tensor_dict.items():
|
142 |
-
module_name, param_name = block_name.split(".", 1)
|
143 |
-
if hasattr(transformer, module_name):
|
144 |
-
getattr(transformer, module_name).load_state_dict({param_name: param}, strict=False)
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
147 |
tokenizer=tokenizer,
|
148 |
text_encoder=text_encoder,
|
149 |
vae=vae,
|
150 |
transformer=transformer,
|
|
|
151 |
scheduler=scheduler,
|
152 |
-
)
|
|
|
|
|
|
|
153 |
|
154 |
return pipe
|
155 |
|
|
|
92 |
"cogvideox-2b": (480, 720),
|
93 |
}
|
94 |
|
95 |
+
def load_cogvideox_flovd_OMSM_lora_pipeline(omsm_path, backbone_path, transformer_lora_config, device, dtype):
|
|
|
|
|
|
|
|
|
96 |
tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
|
97 |
+
text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder")
|
98 |
+
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
99 |
+
backbone_path, subfolder="transformer", torch_dtype=dtype, device_map="auto"
|
100 |
+
)
|
101 |
+
vae = AutoencoderKLCogVideoX.from_pretrained(
|
102 |
+
backbone_path, subfolder="vae", torch_dtype=dtype, device_map="auto"
|
103 |
+
)
|
104 |
scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")
|
105 |
|
106 |
+
# 1) Load Lora weight
|
107 |
+
transformer.add_adapter(transformer_lora_config)
|
|
|
108 |
|
109 |
+
lora_state_dict = FloVDOMSMCogVideoXImageToVideoPipeline.lora_state_dict(omsm_path)
|
110 |
+
transformer_state_dict = {
|
111 |
+
f'{k.replace("transformer.", "")}': v
|
112 |
+
for k, v in lora_state_dict.items()
|
113 |
+
if k.startswith("transformer.")
|
114 |
+
}
|
115 |
+
incompatible_keys = set_peft_model_state_dict(transformer, transformer_state_dict, adapter_name="default")
|
116 |
+
if incompatible_keys is not None:
|
117 |
+
# check only for unexpected keys
|
118 |
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
119 |
+
if unexpected_keys:
|
120 |
+
logger.warning(
|
121 |
+
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
122 |
+
f" {unexpected_keys}. "
|
123 |
+
)
|
124 |
+
|
125 |
+
# 2) Load Other weight
|
126 |
+
load_path = os.path.join(omsm_path, "selected_blocks.safetensors")
|
127 |
+
if os.path.exists(load_path):
|
128 |
+
tensor_dict = load_file(load_path)
|
129 |
+
|
130 |
+
block_state_dicts = {}
|
131 |
+
for k, v in tensor_dict.items():
|
132 |
+
block_name, param_name = k.split(".", 1)
|
133 |
+
if block_name not in block_state_dicts:
|
134 |
+
block_state_dicts[block_name] = {}
|
135 |
+
block_state_dicts[block_name][param_name] = v
|
136 |
+
|
137 |
+
for block_name, state_dict in block_state_dicts.items():
|
138 |
+
if hasattr(transformer, block_name):
|
139 |
+
getattr(transformer, block_name).load_state_dict(state_dict)
|
140 |
+
else:
|
141 |
+
raise ValueError(f"Transformer has no attribute '{block_name}'")
|
142 |
+
|
143 |
+
pipe = FloVDOMSMCogVideoXImageToVideoPipeline(
|
144 |
tokenizer=tokenizer,
|
145 |
text_encoder=text_encoder,
|
146 |
vae=vae,
|
147 |
transformer=transformer,
|
|
|
148 |
scheduler=scheduler,
|
149 |
+
)
|
150 |
+
|
151 |
+
pipe.vae.enable_slicing()
|
152 |
+
pipe.vae.enable_tiling()
|
153 |
|
154 |
return pipe
|
155 |
|
156 |
|
157 |
+
def load_cogvideox_flovd_FVSM_controlnet_pipeline(controlnet_path, backbone_path, device, dtype):
|
158 |
+
controlnet_sd = torch.load(controlnet_path, map_location='cpu')['module']
|
159 |
+
|
160 |
tokenizer = AutoTokenizer.from_pretrained(backbone_path, subfolder="tokenizer")
|
161 |
+
text_encoder = T5EncoderModel.from_pretrained(backbone_path, subfolder="text_encoder")
|
162 |
+
transformer = CustomCogVideoXTransformer3DModel.from_pretrained(
|
163 |
+
backbone_path, subfolder="transformer", torch_dtype=dtype, device_map="auto"
|
164 |
+
)
|
165 |
+
vae = AutoencoderKLCogVideoX.from_pretrained(
|
166 |
+
backbone_path, subfolder="vae", torch_dtype=dtype, device_map="auto"
|
167 |
+
)
|
168 |
scheduler = CogVideoXDPMScheduler.from_pretrained(backbone_path, subfolder="scheduler")
|
169 |
|
170 |
+
additional_kwargs = {
|
171 |
+
'num_layers': 6,
|
172 |
+
'out_proj_dim_factor': 64,
|
173 |
+
'out_proj_dim_zero_init': True,
|
174 |
+
'notextinflow': True,
|
|
|
175 |
}
|
176 |
+
controlnet = CogVideoXControlnet.from_pretrained(backbone_path, subfolder="transformer", **additional_kwargs)
|
177 |
+
controlnet.eval()
|
178 |
|
179 |
+
missing, unexpected = controlnet.load_state_dict(controlnet_sd)
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
if len(missing) != 0 or len(unexpected) != 0:
|
182 |
+
print(f"Missing keys : {missing}")
|
183 |
+
print(f"Unexpected keys : {unexpected}")
|
184 |
+
|
185 |
+
pipe = FloVDCogVideoXControlnetImageToVideoPipeline(
|
186 |
tokenizer=tokenizer,
|
187 |
text_encoder=text_encoder,
|
188 |
vae=vae,
|
189 |
transformer=transformer,
|
190 |
+
controlnet=controlnet,
|
191 |
scheduler=scheduler,
|
192 |
+
)
|
193 |
+
|
194 |
+
pipe.vae.enable_slicing()
|
195 |
+
pipe.vae.enable_tiling()
|
196 |
|
197 |
return pipe
|
198 |
|