|
import os |
|
import argparse |
|
import numpy as np |
|
import matplotlib as mpl |
|
import matplotlib.pyplot as plt |
|
from mpl_toolkits.mplot3d.art3d import Poly3DCollection |
|
|
|
import pdb |
|
|
|
class CameraPoseVisualizer: |
|
def __init__(self, xlim, ylim, zlim): |
|
self.fig = plt.figure(figsize=(18, 7)) |
|
self.ax = self.fig.add_subplot(projection='3d') |
|
self.plotly_data = None |
|
self.ax.set_aspect("auto") |
|
self.ax.set_xlim(xlim) |
|
self.ax.set_ylim(ylim) |
|
self.ax.set_zlim(zlim) |
|
self.ax.set_xlabel('x') |
|
self.ax.set_ylabel('y') |
|
self.ax.set_zlabel('z') |
|
|
|
|
|
print('initialize camera pose visualizer') |
|
|
|
def extrinsic2pyramid(self, extrinsic, color_map='red', hw_ratio=9/16, base_xval=1, zval=3): |
|
vertex_std = np.array([[0, 0, 0, 1], |
|
[base_xval, -base_xval * hw_ratio, zval, 1], |
|
[base_xval, base_xval * hw_ratio, zval, 1], |
|
[-base_xval, base_xval * hw_ratio, zval, 1], |
|
[-base_xval, -base_xval * hw_ratio, zval, 1]]) |
|
vertex_transformed = vertex_std @ extrinsic.T |
|
meshes = [[vertex_transformed[0, :-1], vertex_transformed[1][:-1], vertex_transformed[2, :-1]], |
|
[vertex_transformed[0, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1]], |
|
[vertex_transformed[0, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]], |
|
[vertex_transformed[0, :-1], vertex_transformed[4, :-1], vertex_transformed[1, :-1]], |
|
[vertex_transformed[1, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]]] |
|
|
|
color = color_map if isinstance(color_map, str) else plt.cm.rainbow(color_map) |
|
|
|
self.ax.add_collection3d( |
|
Poly3DCollection(meshes, facecolors=color, linewidths=0.3, edgecolors=color, alpha=0.35)) |
|
|
|
def colorbar(self, max_frame_length): |
|
cmap = mpl.cm.rainbow |
|
norm = mpl.colors.Normalize(vmin=0, vmax=max_frame_length) |
|
self.fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), ax=self.ax, orientation='vertical', label='Frame Indexes') |
|
|
|
def show(self, save_path=None): |
|
plt.title('Camera Trajectory') |
|
plt.show() |
|
if save_path is not None: |
|
plt.savefig(save_path) |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--pose_file_path', required=True) |
|
parser.add_argument('--hw_ratio', default=9/16, type=float) |
|
parser.add_argument('--base_xval', type=float, default=1.0) |
|
parser.add_argument('--zval', type=float, default=2.0) |
|
parser.add_argument('--use_exact_fx', action='store_true') |
|
parser.add_argument('--relative_c2w', action='store_true') |
|
parser.add_argument('--x_min', type=float, default=-2) |
|
parser.add_argument('--x_max', type=float, default=2) |
|
parser.add_argument('--y_min', type=float, default=-2) |
|
parser.add_argument('--y_max', type=float, default=2) |
|
parser.add_argument('--z_min', type=float, default=-2) |
|
parser.add_argument('--z_max', type=float, default=2) |
|
parser.add_argument('--save_path', type=str, default='./assets/cam_trajectory/') |
|
return parser.parse_args() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_c2w(w2cs, transform_matrix, relative_c2w): |
|
if relative_c2w: |
|
target_cam_c2w = np.array([ |
|
[1, 0, 0, 0], |
|
[0, 1, 0, 0], |
|
[0, 0, 1, 0], |
|
[0, 0, 0, 1] |
|
]) |
|
abs2rel = target_cam_c2w @ w2cs[0] |
|
ret_poses = [target_cam_c2w, ] + [abs2rel @ np.linalg.inv(w2c) for w2c in w2cs[1:]] |
|
|
|
|
|
|
|
else: |
|
ret_poses = [np.linalg.inv(w2c) for w2c in w2cs] |
|
ret_poses = [transform_matrix @ x for x in ret_poses] |
|
return np.array(ret_poses, dtype=np.float32) |
|
|
|
|
|
if __name__ == '__main__': |
|
args = get_args() |
|
with open(args.pose_file_path, 'r') as f: |
|
poses = f.readlines() |
|
w2cs = [np.asarray([float(p) for p in pose.strip().split(' ')[6:]]).reshape(3, 4) for pose in poses] |
|
fxs = [float(pose.strip().split(' ')[1]) for pose in poses[1:]] |
|
num_frames = len(w2cs) |
|
transform_matrix = np.asarray([[1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 0], [0, 0, 0, 1]]).reshape(4, 4) |
|
|
|
last_row = np.zeros((1, 4)) |
|
last_row[0, -1] = 1.0 |
|
w2cs = [np.concatenate((w2c, last_row), axis=0) for w2c in w2cs] |
|
c2ws = get_c2w(w2cs, transform_matrix, args.relative_c2w) |
|
|
|
visualizer = CameraPoseVisualizer([args.x_min, args.x_max], [args.y_min, args.y_max], [args.z_min, args.z_max]) |
|
for frame_idx, c2w in enumerate(c2ws): |
|
visualizer.extrinsic2pyramid(c2w, frame_idx / num_frames, hw_ratio=args.hw_ratio, base_xval=args.base_xval, |
|
zval=(fxs[frame_idx] if args.use_exact_fx else args.zval)) |
|
|
|
visualizer.colorbar(num_frames) |
|
pose_file_name = args.pose_file_path.split('/')[-1].split('.')[0] |
|
|
|
os.makedirs(args.save_path, exist_ok=True) |
|
save_path = os.path.join(args.save_path, pose_file_name+'.png') |
|
visualizer.show(save_path) |