|
import inspect |
|
import math |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
from typing_extensions import override |
|
|
|
import PIL |
|
import torch |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKLCogVideoX, |
|
CogVideoXDPMScheduler, |
|
CogVideoXImageToVideoPipeline, |
|
CogVideoXTransformer3DModel, |
|
) |
|
|
|
from diffusers.pipelines.cogvideo.pipeline_output import CogVideoXPipelineOutput |
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback |
|
from diffusers.image_processor import PipelineImageInput |
|
from diffusers.pipelines.cogvideo.pipeline_cogvideox_image2video import retrieve_timesteps |
|
from diffusers.utils import is_torch_xla_available |
|
|
|
import pdb |
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
|
|
class FloVDOMSMCogVideoXImageToVideoPipeline(CogVideoXImageToVideoPipeline): |
|
@override |
|
def __call__( |
|
self, |
|
image: PipelineImageInput, |
|
prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_frames: int = 49, |
|
num_inference_steps: int = 50, |
|
timesteps: Optional[List[int]] = None, |
|
guidance_scale: float = 6, |
|
use_dynamic_cfg: bool = False, |
|
num_videos_per_prompt: int = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: str = "pil", |
|
return_dict: bool = True, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[ |
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] |
|
] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 226, |
|
) -> Union[CogVideoXPipelineOutput, Tuple]: |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
image (`PipelineImageInput`): |
|
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`. |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): |
|
The height in pixels of the generated image. This is set to 480 by default for the best results. |
|
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): |
|
The width in pixels of the generated image. This is set to 720 by default for the best results. |
|
num_frames (`int`, defaults to `48`): |
|
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will |
|
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where |
|
num_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that |
|
needs to be satisfied is that of divisibility mentioned above. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_videos_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of videos to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
of a plain tuple. |
|
attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int`, defaults to `226`): |
|
Maximum sequence length in encoded prompt. Must be consistent with |
|
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] or `tuple`: |
|
[`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial |
|
width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial |
|
num_frames = num_frames or self.transformer.config.sample_frames |
|
|
|
num_videos_per_prompt = 1 |
|
|
|
|
|
self.check_inputs( |
|
image=image, |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
negative_prompt=negative_prompt, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
latents=latents, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
self._guidance_scale = guidance_scale |
|
self._current_timestep = None |
|
self._attention_kwargs = attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
) |
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds.to(negative_prompt_embeds.device)], dim=0) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 |
|
|
|
|
|
patch_size_t = self.transformer.config.patch_size_t |
|
additional_frames = 0 |
|
if patch_size_t is not None and latent_frames % patch_size_t != 0: |
|
additional_frames = patch_size_t - latent_frames % patch_size_t |
|
num_frames += additional_frames * self.vae_scale_factor_temporal |
|
|
|
image = self.video_processor.preprocess(image, height=height, width=width).to( |
|
device, dtype=prompt_embeds.dtype |
|
) |
|
|
|
latent_channels = self.transformer.config.in_channels // 2 |
|
latents, image_latents = self.prepare_latents( |
|
image, |
|
batch_size * num_videos_per_prompt, |
|
latent_channels, |
|
num_frames, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
image_rotary_emb = ( |
|
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) |
|
if self.transformer.config.use_rotary_positional_embeddings |
|
else None |
|
) |
|
|
|
|
|
ofs_emb = None if self.transformer.config.ofs_embed_dim is None else latents.new_full((1,), fill_value=2.0) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
|
|
old_pred_original_sample = None |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
self._current_timestep = t |
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
|
|
|
|
latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents |
|
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) |
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep=timestep, |
|
ofs=ofs_emb, |
|
image_rotary_emb=image_rotary_emb, |
|
attention_kwargs=attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
noise_pred = noise_pred.float() |
|
|
|
|
|
if use_dynamic_cfg: |
|
self._guidance_scale = 1 + guidance_scale * ( |
|
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 |
|
) |
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if not isinstance(self.scheduler, CogVideoXDPMScheduler): |
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
else: |
|
latents, old_pred_original_sample = self.scheduler.step( |
|
noise_pred, |
|
old_pred_original_sample, |
|
t, |
|
timesteps[i - 1] if i > 0 else None, |
|
latents, |
|
**extra_step_kwargs, |
|
return_dict=False, |
|
) |
|
latents = latents.to(prompt_embeds.dtype) |
|
|
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
self._current_timestep = None |
|
|
|
if not output_type == "latent": |
|
|
|
latents = latents[:, additional_frames:] |
|
video = self.decode_latents(latents) |
|
video = self.video_processor.postprocess_video(video=video, output_type=output_type) |
|
else: |
|
video = latents |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (video,) |
|
|
|
return CogVideoXPipelineOutput(frames=video) |