File size: 3,980 Bytes
7e06d6b
 
 
 
 
 
5478472
 
 
7e06d6b
 
 
 
4da8dee
7e06d6b
4da8dee
7e06d6b
 
4da8dee
7e06d6b
4da8dee
 
 
 
 
 
 
 
 
 
7e06d6b
4da8dee
5478472
f4a2ddb
7e06d6b
ded78ff
5478472
 
 
 
 
 
fd66ee7
5478472
fd66ee7
 
 
5478472
7e06d6b
fd66ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5478472
 
 
 
fd66ee7
 
5478472
fd66ee7
5478472
 
 
 
 
 
 
 
 
 
 
7e06d6b
ded78ff
 
 
 
 
 
 
 
 
 
 
 
 
5478472
7e06d6b
5478472
 
 
 
 
7b58632
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import gradio as gr
import torch
import subprocess
from PIL import Image
from pathlib import Path
import io
import sys
import traceback

# =========================================
# 1. Define Hugging Face weights and paths
# =========================================
from huggingface_hub import hf_hub_download

HF_DATASET_REPO = "roll-ai/FloVD-weights"  # dataset repo ID

def download_weights():
    print("πŸ”„ Downloading model weights via huggingface_hub...")
    for rel_path in WEIGHT_FILES.values():
        local_path = Path("ckpt") / rel_path
        if not local_path.exists():
            print(f"πŸ“₯ Downloading {rel_path}")
            hf_hub_download(
                repo_id=HF_DATASET_REPO,
                repo_type="dataset",
                filename=rel_path,
                local_dir="ckpt",
                local_dir_use_symlinks=False,
            )
        else:
            print(f"βœ… Already exists: {local_path}")

from inference.flovd_demo import generate_video

def run_inference(prompt, image, pose_type, speed, use_flow_integration, cam_pose_name):
    # Redirect stdout to capture logs
    log_buffer = io.StringIO()
    sys_stdout = sys.stdout
    sys.stdout = log_buffer

    video_path = None
    try:
        print("πŸš€ Starting inference...")
        os.makedirs("input_images", exist_ok=True)
        image_path = "input_images/input_image.png"
        image.save(image_path)
        print(f"πŸ“Έ Saved input image to {image_path}")

        generate_video(
            prompt=prompt,
            image_path=image_path,
            fvsm_path="./ckpt/FVSM/FloVD_FVSM_Controlnet.pt",
            omsm_path="./ckpt/OMSM",
            output_path="./outputs",
            num_frames=49,
            fps=16,
            width=None,
            height=None,
            seed=42,
            guidance_scale=6.0,
            dtype=torch.float16,
            controlnet_guidance_end=0.4,
            use_dynamic_cfg=False,
            pose_type=pose_type,
            speed=float(speed),
            use_flow_integration=use_flow_integration,
            cam_pose_name=cam_pose_name,
            depth_ckpt_path="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth"
        )

        video_name = f"{prompt[:30].strip().replace(' ', '_')}_{cam_pose_name or 'default'}.mp4"
        video_path = f"./outputs/generated_videos/{video_name}"
        print(f"βœ… Inference complete. Video saved to {video_path}")

    except Exception as e:
        print("πŸ”₯ Inference failed with exception:")
        traceback.print_exc()

    # Restore stdout and return logs
    sys.stdout = sys_stdout
    logs = log_buffer.getvalue()
    log_buffer.close()

    return (video_path if video_path and os.path.exists(video_path) else None), logs

# ========================
# Gradio Interface
# ========================

with gr.Blocks() as demo:
    gr.Markdown("## πŸŽ₯ FloVD: Optical Flow + CogVideoX Video Generation")
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt", value="A girl riding a bicycle through a park.")
            image = gr.Image(type="pil", label="Input Image")
            pose_type = gr.Radio(choices=["manual", "re10k"], value="manual", label="Camera Pose Type")
            cam_pose_name = gr.Textbox(label="Camera Trajectory Name", placeholder="e.g. zoom_in, tilt_up")
            speed = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.5, label="Speed")
            use_flow_integration = gr.Checkbox(label="Use Flow Integration", value=False)
            submit = gr.Button("Generate Video")
        with gr.Column():
            output_video = gr.Video(label="Generated Video")
            output_logs = gr.Textbox(label="Logs", lines=20, interactive=False)

    submit.click(
        fn=run_inference,
        inputs=[prompt, image, pose_type, speed, use_flow_integration, cam_pose_name],
        outputs=[output_video, output_logs]
    )
demo.launch(show_error=True)