File size: 3,980 Bytes
7e06d6b 5478472 7e06d6b 4da8dee 7e06d6b 4da8dee 7e06d6b 4da8dee 7e06d6b 4da8dee 7e06d6b 4da8dee 5478472 f4a2ddb 7e06d6b ded78ff 5478472 fd66ee7 5478472 fd66ee7 5478472 7e06d6b fd66ee7 5478472 fd66ee7 5478472 fd66ee7 5478472 7e06d6b ded78ff 5478472 7e06d6b 5478472 7b58632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import os
import gradio as gr
import torch
import subprocess
from PIL import Image
from pathlib import Path
import io
import sys
import traceback
# =========================================
# 1. Define Hugging Face weights and paths
# =========================================
from huggingface_hub import hf_hub_download
HF_DATASET_REPO = "roll-ai/FloVD-weights" # dataset repo ID
def download_weights():
print("π Downloading model weights via huggingface_hub...")
for rel_path in WEIGHT_FILES.values():
local_path = Path("ckpt") / rel_path
if not local_path.exists():
print(f"π₯ Downloading {rel_path}")
hf_hub_download(
repo_id=HF_DATASET_REPO,
repo_type="dataset",
filename=rel_path,
local_dir="ckpt",
local_dir_use_symlinks=False,
)
else:
print(f"β
Already exists: {local_path}")
from inference.flovd_demo import generate_video
def run_inference(prompt, image, pose_type, speed, use_flow_integration, cam_pose_name):
# Redirect stdout to capture logs
log_buffer = io.StringIO()
sys_stdout = sys.stdout
sys.stdout = log_buffer
video_path = None
try:
print("π Starting inference...")
os.makedirs("input_images", exist_ok=True)
image_path = "input_images/input_image.png"
image.save(image_path)
print(f"πΈ Saved input image to {image_path}")
generate_video(
prompt=prompt,
image_path=image_path,
fvsm_path="./ckpt/FVSM/FloVD_FVSM_Controlnet.pt",
omsm_path="./ckpt/OMSM",
output_path="./outputs",
num_frames=49,
fps=16,
width=None,
height=None,
seed=42,
guidance_scale=6.0,
dtype=torch.float16,
controlnet_guidance_end=0.4,
use_dynamic_cfg=False,
pose_type=pose_type,
speed=float(speed),
use_flow_integration=use_flow_integration,
cam_pose_name=cam_pose_name,
depth_ckpt_path="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth"
)
video_name = f"{prompt[:30].strip().replace(' ', '_')}_{cam_pose_name or 'default'}.mp4"
video_path = f"./outputs/generated_videos/{video_name}"
print(f"β
Inference complete. Video saved to {video_path}")
except Exception as e:
print("π₯ Inference failed with exception:")
traceback.print_exc()
# Restore stdout and return logs
sys.stdout = sys_stdout
logs = log_buffer.getvalue()
log_buffer.close()
return (video_path if video_path and os.path.exists(video_path) else None), logs
# ========================
# Gradio Interface
# ========================
with gr.Blocks() as demo:
gr.Markdown("## π₯ FloVD: Optical Flow + CogVideoX Video Generation")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="A girl riding a bicycle through a park.")
image = gr.Image(type="pil", label="Input Image")
pose_type = gr.Radio(choices=["manual", "re10k"], value="manual", label="Camera Pose Type")
cam_pose_name = gr.Textbox(label="Camera Trajectory Name", placeholder="e.g. zoom_in, tilt_up")
speed = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.5, label="Speed")
use_flow_integration = gr.Checkbox(label="Use Flow Integration", value=False)
submit = gr.Button("Generate Video")
with gr.Column():
output_video = gr.Video(label="Generated Video")
output_logs = gr.Textbox(label="Logs", lines=20, interactive=False)
submit.click(
fn=run_inference,
inputs=[prompt, image, pose_type, speed, use_flow_integration, cam_pose_name],
outputs=[output_video, output_logs]
)
demo.launch(show_error=True)
|