File size: 4,433 Bytes
7e06d6b 5478472 3ca8d26 7e06d6b 3ca8d26 7e06d6b 3ca8d26 3f4e721 3ca8d26 3f4e721 3ca8d26 7e06d6b 4da8dee 3ca8d26 4da8dee 3ca8d26 4da8dee 3ca8d26 8969c85 4da8dee 7e06d6b 4da8dee 3ca8d26 4603c42 3ca8d26 f4a2ddb 7e06d6b ded78ff 5478472 fd66ee7 5478472 fd66ee7 5478472 7e06d6b fd66ee7 c51f035 fd66ee7 5478472 fd66ee7 3ca8d26 5478472 fd66ee7 5478472 3ca8d26 7e06d6b ded78ff 5478472 7e06d6b 5478472 3ca8d26 7b58632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import os
import gradio as gr
import torch
from PIL import Image
from pathlib import Path
import io
import sys
import traceback
from huggingface_hub import hf_hub_download
# =========================================
# 1. Define Hugging Face dataset + weights
# =========================================
HF_DATASET_REPO = "roll-ai/FloVD-weights" # your dataset repo on HF
WEIGHT_FILES = {
"ckpt/FVSM/FloVD_FVSM_Controlnet.pt": "FVSM/FloVD_FVSM_Controlnet.pt",
"ckpt/OMSM/selected_blocks.safetensors": "OMSM/selected_blocks.safetensors",
"ckpt/OMSM/pytorch_lora_weights.safetensors": "OMSM/pytorch_lora_weights.safetensors",
"ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth": "others/depth_anything_v2_metric_hypersim_vitb.pth"
}
def download_weights():
print("π Downloading model weights via huggingface_hub...")
for hf_path, local_rel_path in WEIGHT_FILES.items():
local_path = Path("ckpt") / local_rel_path
if not local_path.exists():
print(f"π₯ Downloading {hf_path}")
hf_hub_download(
repo_id=HF_DATASET_REPO,
repo_type="dataset",
filename=hf_path,
local_dir="./"
)
else:
print(f"β
Already exists: {local_path}")
download_weights()
# =========================================
# 2. Import the FloVD generation pipeline
# =========================================
from inference.flovd_demo import generate_video
def run_inference(prompt, image, pose_type, speed, use_flow_integration, cam_pose_name):
log_buffer = io.StringIO()
sys_stdout = sys.stdout
sys.stdout = log_buffer
video_path = None
try:
print("π Starting inference...")
os.makedirs("input_images", exist_ok=True)
image_path = "input_images/input_image.png"
image.save(image_path)
print(f"πΈ Saved input image to {image_path}")
generate_video(
prompt=prompt,
image_path=image_path,
fvsm_path="./ckpt/FVSM/FloVD_FVSM_Controlnet.pt",
omsm_path="./ckpt/OMSM",
output_path="./outputs",
num_frames=49,
fps=16,
width=None,
height=None,
seed=42,
guidance_scale=6.0,
dtype=torch.float16,
controlnet_guidance_end=0.4,
use_dynamic_cfg=False,
pose_type=pose_type,
speed=float(speed),
use_flow_integration=use_flow_integration,
cam_pose_name=cam_pose_name,
depth_ckpt_path="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth"
)
video_name = f"{prompt[:30].strip().replace(' ', '_')}_{cam_pose_name or 'default'}.mp4"
video_path = f"./outputs/generated_videos/{video_name}"
print(f"β
Inference complete. Video saved to {video_path}")
except Exception:
print("π₯ Inference failed with exception:")
traceback.print_exc()
sys.stdout = sys_stdout
logs = log_buffer.getvalue()
log_buffer.close()
return (video_path if video_path and os.path.exists(video_path) else None), logs
# =========================================
# 3. Gradio App Interface
# =========================================
with gr.Blocks() as demo:
gr.Markdown("## π₯ FloVD: Optical Flow + CogVideoX Video Generation")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="A girl riding a bicycle through a park.")
image = gr.Image(type="pil", label="Input Image")
pose_type = gr.Radio(choices=["manual", "re10k"], value="manual", label="Camera Pose Type")
cam_pose_name = gr.Textbox(label="Camera Trajectory Name", placeholder="e.g. zoom_in, tilt_up")
speed = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.5, label="Speed")
use_flow_integration = gr.Checkbox(label="Use Flow Integration", value=False)
submit = gr.Button("Generate Video")
with gr.Column():
output_video = gr.Video(label="Generated Video")
output_logs = gr.Textbox(label="Logs", lines=20, interactive=False)
submit.click(
fn=run_inference,
inputs=[prompt, image, pose_type, speed, use_flow_integration, cam_pose_name],
outputs=[output_video, output_logs]
)
demo.launch(show_error=True)
|