File size: 6,584 Bytes
7e06d6b
 
 
 
 
5478472
 
 
3ca8d26
7e06d6b
99da118
 
 
 
7e06d6b
3ca8d26
7e06d6b
 
99da118
3ca8d26
0256ee4
99da118
0256ee4
 
 
 
99da118
 
 
0256ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
3ca8d26
782dbf6
3ca8d26
69369b0
 
 
 
 
 
 
 
 
 
 
99da118
3ca8d26
99da118
3ca8d26
 
f4a2ddb
99da118
ded78ff
5478472
 
 
 
 
fd66ee7
7fcd0f6
fd66ee7
 
912e82f
 
 
 
fd66ee7
7fcd0f6
7e06d6b
fd66ee7
 
 
c51f035
fd66ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5478472
 
 
 
fd66ee7
3ca8d26
5478472
fd66ee7
5478472
 
 
 
 
 
 
99da118
3ca8d26
99da118
3ca8d26
7e06d6b
99da118
776193b
 
 
88cd6a9
776193b
 
 
173f5b1
776193b
173f5b1
 
776193b
 
 
 
 
 
 
 
 
99da118
23146cc
99da118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23146cc
 
 
 
 
 
99da118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
776193b
99da118
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import gradio as gr
import torch
from PIL import Image
from pathlib import Path
import io
import sys
import traceback
from huggingface_hub import hf_hub_download

# For live system monitoring
import psutil
import GPUtil

# =========================================
# 1. Define Hugging Face dataset + weights
# =========================================

HF_DATASET_REPO = "roll-ai/FloVD-weights"

WEIGHT_FILES = {
    "ckpt/FVSM/FloVD_FVSM_Controlnet.pt": "FVSM/FloVD_FVSM_Controlnet.pt",
    "ckpt/OMSM/selected_blocks.safetensors": "OMSM/selected_blocks.safetensors",
    "ckpt/OMSM/pytorch_lora_weights.safetensors": "OMSM/pytorch_lora_weights.safetensors",
    "ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth": "others/depth_anything_v2_metric_hypersim_vitb.pth"
}

print("\nDownloading model...", flush=True)

def download_weights():
    print("๐Ÿ”„ Downloading model weights via huggingface_hub...")
    for hf_path, local_rel_path in WEIGHT_FILES.items():
        local_path = Path("ckpt") / local_rel_path
        if not local_path.exists():
            print(f"๐Ÿ“ฅ Downloading {hf_path}")
            hf_hub_download(
                repo_id=HF_DATASET_REPO,
                repo_type="dataset",
                filename=hf_path,
                local_dir="./"
            )
        else:
            print(f"โœ… Already exists: {local_path}")

download_weights()

def print_ckpt_structure(base_path="ckpt"):
    print(f"๐Ÿ“‚ Listing structure of: {base_path}", flush=True)
    for root, dirs, files in os.walk(base_path):
        level = root.replace(base_path, '').count(os.sep)
        indent = ' ' * 2 * level
        print(f"{indent}๐Ÿ“ {os.path.basename(root)}/", flush=True)
        sub_indent = ' ' * 2 * (level + 1)
        for f in files:
            print(f"{sub_indent}๐Ÿ“„ {f}", flush=True)

print_ckpt_structure()

# =========================================
# 2. Import FloVD generation pipeline
# =========================================

from inference.flovd_demo import generate_video

def run_inference(prompt, image, pose_type, speed, use_flow_integration, cam_pose_name):
    log_buffer = io.StringIO()
    sys_stdout = sys.stdout
    sys.stdout = log_buffer

    video_path = None
    try:
        print("๐Ÿš€ Starting inference...", flush=True)
        os.makedirs("input_images", exist_ok=True)
        image_path = "input_images/input_image.png"

        if not isinstance(image, Image.Image):
            image = Image.fromarray(image.astype("uint8"))

        image.save(image_path)
        print(f"๐Ÿ“ธ Saved input image to {image_path}", flush=True)

        generate_video(
            prompt=prompt,
            image_path=image_path,
            fvsm_path="./ckpt/FVSM/FloVD_FVSM_Controlnet.pt",
            omsm_path="./ckpt/OMSM",
            output_path="./outputs",
            num_frames=49,
            fps=16,
            width=None,
            height=None,
            seed=42,
            guidance_scale=6.0,
            dtype=torch.float16,
            controlnet_guidance_end=0.4,
            use_dynamic_cfg=False,
            pose_type=pose_type,
            speed=float(speed),
            use_flow_integration=use_flow_integration,
            cam_pose_name=cam_pose_name,
            depth_ckpt_path="./ckpt/others/depth_anything_v2_metric_hypersim_vitb.pth"
        )

        video_name = f"{prompt[:30].strip().replace(' ', '_')}_{cam_pose_name or 'default'}.mp4"
        video_path = f"./outputs/generated_videos/{video_name}"
        print(f"โœ… Inference complete. Video saved to {video_path}")

    except Exception:
        print("๐Ÿ”ฅ Inference failed with exception:")
        traceback.print_exc()

    sys.stdout = sys_stdout
    logs = log_buffer.getvalue()
    log_buffer.close()

    return (video_path if video_path and os.path.exists(video_path) else None), logs


# =========================================
# 3. Define FloVD Gradio Interface
# =========================================

video_interface = gr.Interface(
    fn=run_inference,
    inputs=[
        gr.Textbox(label="Prompt", value="A girl riding a bicycle through a park."),
        gr.Image(label="Input Image"),
        gr.Radio(choices=["manual", "re10k"], value="manual", label="Camera Pose Type"),
        gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.5, label="Camera Speed"),
        gr.Checkbox(label="Use Flow Integration", value=False),
        gr.Textbox(
            label="Camera Trajectory",
            placeholder="e.g., zoom_in, custom_motion, etc.",
            lines=1
        )
    ],
    outputs=[
        gr.Video(label="Generated Video"),
        gr.Textbox(label="Logs", lines=20, interactive=False),
    ],
    title="๐ŸŽฅ FloVD: Optical Flow + CogVideoX Video Generation",
    description="Upload an image and prompt to generate motion-controlled video using FloVD and CogVideoX."
)
# =========================================
# 4. Live System Monitor (Fixed)
# =========================================

def get_system_stats():
    cpu = psutil.cpu_percent()
    mem = psutil.virtual_memory()
    disk = psutil.disk_usage('/')
    try:
        gpus = GPUtil.getGPUs()
        gpu_info = "\n".join([
            f"GPU {i}: {gpu.name}, {gpu.memoryUsed}MB / {gpu.memoryTotal}MB, Util: {gpu.load * 100:.1f}%"
            for i, gpu in enumerate(gpus)
        ]) if gpus else "No GPU detected"
    except Exception as e:
        gpu_info = f"GPU info error: {e}"

    return (
        f"๐Ÿง  CPU Usage: {cpu}%\n"
        f"๐Ÿ’พ RAM: {mem.used / 1e9:.2f} GB / {mem.total / 1e9:.2f} GB ({mem.percent}%)\n"
        f"๐Ÿ—„๏ธ Disk: {disk.used / 1e9:.2f} GB / {disk.total / 1e9:.2f} GB ({disk.percent}%)\n"
        f"๐ŸŽฎ {gpu_info}"
    )

with gr.Blocks() as monitor_tab:
    gr.Markdown("## ๐Ÿ“Š Live System Resource Monitor")
    stats_box = gr.Textbox(label="Live Stats", lines=10, interactive=False)

    def update_stats():
        return gr.update(value=get_system_stats())

    stats_btn = gr.Button("๐Ÿ”„ Refresh Stats")
    stats_btn.click(fn=update_stats, outputs=stats_box)

# =========================================
# 5. Combine Tabs: FloVD + Monitor
# =========================================

with gr.Blocks() as app:
    with gr.Tab("๐ŸŽฅ Video Generator"):
        video_interface.render()
    with gr.Tab("๐Ÿ“Š System Monitor"):
        monitor_tab.render()

# =========================================
# 6. Launch App
# =========================================

if __name__ == "__main__":
    app.launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)