Muhammad Taqi Raza
commited on
Commit
·
ca22dfe
1
Parent(s):
cbf4da5
modifying requirements.txt
Browse files
cogvideo_controlnet_pcd.py
CHANGED
@@ -237,11 +237,6 @@ class CogVideoXControlnetPCD(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
|
237 |
temb=emb,
|
238 |
image_rotary_emb=image_rotary_emb,
|
239 |
)
|
240 |
-
|
241 |
-
print("hidden_states shape:", hidden_states.shape)
|
242 |
-
print("out_projectors[i](hidden_states) shape:", self.out_projectors[i](hidden_states).shape)
|
243 |
-
print("controlnet_output_mask shape:", controlnet_output_mask.shape)
|
244 |
-
|
245 |
|
246 |
if self.out_projectors is not None:
|
247 |
if controlnet_output_mask is not None:
|
|
|
237 |
temb=emb,
|
238 |
image_rotary_emb=image_rotary_emb,
|
239 |
)
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
if self.out_projectors is not None:
|
242 |
if controlnet_output_mask is not None:
|
inference/cli_demo_camera_i2v_pcd.py
CHANGED
@@ -368,6 +368,27 @@ def generate_video(
|
|
368 |
|
369 |
# ++++++++++++++++++++++++++++++++++++++
|
370 |
latents = video_generate_all # This is a latent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
scale_status = True
|
373 |
rife_status = True
|
@@ -378,7 +399,7 @@ def generate_video(
|
|
378 |
|
379 |
video_generate_all = latents
|
380 |
# ++++++++++++++++++++++++++++++++++++++
|
381 |
-
|
382 |
video_generate = video_generate_all[0]
|
383 |
|
384 |
# 6. Export the generated frames to a video file. fps must be 8 for original video.
|
|
|
368 |
|
369 |
# ++++++++++++++++++++++++++++++++++++++
|
370 |
latents = video_generate_all # This is a latent
|
371 |
+
print(f"Type of latents: {type(latents)}")
|
372 |
+
print(f"Length of latents: {len(latents)}")
|
373 |
+
|
374 |
+
# Print detailed info about each item
|
375 |
+
for i, item in enumerate(latents):
|
376 |
+
print(f"\nItem {i}:")
|
377 |
+
print(f" Type: {type(item)}")
|
378 |
+
if isinstance(item, torch.Tensor):
|
379 |
+
print(f" Shape: {item.shape}")
|
380 |
+
print(f" Dtype: {item.dtype}")
|
381 |
+
print(f" Device: {item.device}")
|
382 |
+
elif isinstance(item, np.ndarray):
|
383 |
+
print(f" Shape: {item.shape}")
|
384 |
+
print(f" Dtype: {item.dtype}")
|
385 |
+
elif hasattr(item, 'size') and callable(item.size): # For PIL images
|
386 |
+
print(f" Size (WxH): {item.size}")
|
387 |
+
print(f" Mode: {item.mode}")
|
388 |
+
else:
|
389 |
+
print(f" Value: {item}")
|
390 |
+
# Only works if all elements are tensors of the same shape
|
391 |
+
latents = torch.stack(latents)
|
392 |
|
393 |
scale_status = True
|
394 |
rife_status = True
|
|
|
399 |
|
400 |
video_generate_all = latents
|
401 |
# ++++++++++++++++++++++++++++++++++++++
|
402 |
+
|
403 |
video_generate = video_generate_all[0]
|
404 |
|
405 |
# 6. Export the generated frames to a video file. fps must be 8 for original video.
|