Muhammad Taqi Raza
commited on
Commit
·
ad3dcc2
1
Parent(s):
2f615c0
push
Browse files
inference/cli_demo_camera_i2v_pcd.py
CHANGED
@@ -498,7 +498,6 @@ if __name__ == "__main__":
|
|
498 |
# "--upscale", str(upscale),
|
499 |
# "--upscale_factor", str(upscale_factor),
|
500 |
# "--refine", str(refine),
|
501 |
-
|
502 |
|
503 |
args = parser.parse_args()
|
504 |
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
|
|
|
498 |
# "--upscale", str(upscale),
|
499 |
# "--upscale_factor", str(upscale_factor),
|
500 |
# "--refine", str(refine),
|
|
|
501 |
|
502 |
args = parser.parse_args()
|
503 |
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
|
inference/utils.py
CHANGED
@@ -168,7 +168,8 @@ def load_sd_upscale(ckpt, inf_device):
|
|
168 |
return out
|
169 |
|
170 |
|
171 |
-
def upscale(upscale_model, tensor: torch.Tensor, inf_device, output_device="cpu") -> torch.Tensor:
|
|
|
172 |
memory_required = module_size(upscale_model.model)
|
173 |
memory_required += (
|
174 |
(512 * 512 * 3) * tensor.element_size() * max(upscale_model.scale, 1.0) * 384.0
|
@@ -185,14 +186,14 @@ def upscale(upscale_model, tensor: torch.Tensor, inf_device, output_device="cpu"
|
|
185 |
)
|
186 |
|
187 |
pbar = ProgressBar(steps, desc="Tiling and Upscaling")
|
188 |
-
|
189 |
s = tiled_scale(
|
190 |
samples=tensor.to(torch.float16),
|
191 |
function=lambda a: upscale_model(a),
|
192 |
tile_x=tile,
|
193 |
tile_y=tile,
|
194 |
overlap=overlap,
|
195 |
-
upscale_amount=
|
196 |
pbar=pbar,
|
197 |
)
|
198 |
|
@@ -204,7 +205,7 @@ def upscale_batch_and_concatenate(upscale_model, latents, inf_device, output_dev
|
|
204 |
upscaled_latents = []
|
205 |
for i in range(latents.size(0)):
|
206 |
latent = latents[i]
|
207 |
-
upscaled_latent = upscale(upscale_model, latent, inf_device, output_device)
|
208 |
upscaled_latents.append(upscaled_latent)
|
209 |
return torch.stack(upscaled_latents)
|
210 |
|
|
|
168 |
return out
|
169 |
|
170 |
|
171 |
+
def upscale(upscale_model, tensor: torch.Tensor, inf_device, output_device="cpu", upscale_factor) -> torch.Tensor:
|
172 |
+
|
173 |
memory_required = module_size(upscale_model.model)
|
174 |
memory_required += (
|
175 |
(512 * 512 * 3) * tensor.element_size() * max(upscale_model.scale, 1.0) * 384.0
|
|
|
186 |
)
|
187 |
|
188 |
pbar = ProgressBar(steps, desc="Tiling and Upscaling")
|
189 |
+
# upscale_model.scale
|
190 |
s = tiled_scale(
|
191 |
samples=tensor.to(torch.float16),
|
192 |
function=lambda a: upscale_model(a),
|
193 |
tile_x=tile,
|
194 |
tile_y=tile,
|
195 |
overlap=overlap,
|
196 |
+
upscale_amount=upscale_factor,
|
197 |
pbar=pbar,
|
198 |
)
|
199 |
|
|
|
205 |
upscaled_latents = []
|
206 |
for i in range(latents.size(0)):
|
207 |
latent = latents[i]
|
208 |
+
upscaled_latent = upscale(upscale_model, latent, inf_device, output_device, upscale_factor)
|
209 |
upscaled_latents.append(upscaled_latent)
|
210 |
return torch.stack(upscaled_latents)
|
211 |
|