Muhammad Taqi Raza commited on
Commit
2160ac9
·
1 Parent(s): d3d1fbf

adding fps options, and testing inference-1

Browse files
Files changed (2) hide show
  1. gradio_app.py +7 -6
  2. inference/v2v_data/demo.py +2 -2
gradio_app.py CHANGED
@@ -206,7 +206,7 @@ download_models()
206
  # -----------------------------
207
  # Step 2: Inference Logic
208
  # -----------------------------
209
- def run_epic_inference(video_path, num_frames, target_pose, mode):
210
  temp_input_path = "/app/temp_input.mp4"
211
  output_dir = "/app/output_anchor"
212
  video_output_path = f"{output_dir}/masked_videos/output.mp4"
@@ -218,7 +218,7 @@ def run_epic_inference(video_path, num_frames, target_pose, mode):
218
  try:
219
  theta, phi, r, x, y = target_pose.strip().split()
220
  except ValueError:
221
- return f"Invalid target pose format. Use: θ φ r x y", None
222
  logs = f"Running inference with target pose: θ={theta}, φ={phi}, r={r}, x={x}, y={y}\n"
223
  command = [
224
  "python", "/app/inference/v2v_data/inference.py",
@@ -232,8 +232,8 @@ def run_epic_inference(video_path, num_frames, target_pose, mode):
232
  "--video_length", str(num_frames),
233
  "--save_name", "output",
234
  "--mode", mode,
 
235
  ]
236
-
237
  try:
238
  result = subprocess.run(command, capture_output=True, text=True, check=True)
239
  logs += result.stdout
@@ -255,8 +255,8 @@ def print_output_directory(out_dir):
255
  return result
256
 
257
  def inference(video_path, num_frames, fps, target_pose, mode):
258
- logs, video_masked = run_epic_inference(video_path, num_frames, target_pose, mode)
259
-
260
  result_dir = print_output_directory("/app/output_anchor")
261
 
262
 
@@ -291,7 +291,8 @@ def inference(video_path, num_frames, fps, target_pose, mode):
291
  "--controlnet_transformer_num_layers", "8",
292
  "--infer_with_mask",
293
  "--pool_style", "max",
294
- "--seed", "43"
 
295
  ]
296
 
297
  result = subprocess.run(command, capture_output=True, text=True)
 
206
  # -----------------------------
207
  # Step 2: Inference Logic
208
  # -----------------------------
209
+ def run_epic_inference(video_path, fps, num_frames, target_pose, mode):
210
  temp_input_path = "/app/temp_input.mp4"
211
  output_dir = "/app/output_anchor"
212
  video_output_path = f"{output_dir}/masked_videos/output.mp4"
 
218
  try:
219
  theta, phi, r, x, y = target_pose.strip().split()
220
  except ValueError:
221
+ return f"Invalid target pose format. Use: θ φ r x y", None
222
  logs = f"Running inference with target pose: θ={theta}, φ={phi}, r={r}, x={x}, y={y}\n"
223
  command = [
224
  "python", "/app/inference/v2v_data/inference.py",
 
232
  "--video_length", str(num_frames),
233
  "--save_name", "output",
234
  "--mode", mode,
235
+ "--fps", fps
236
  ]
 
237
  try:
238
  result = subprocess.run(command, capture_output=True, text=True, check=True)
239
  logs += result.stdout
 
255
  return result
256
 
257
  def inference(video_path, num_frames, fps, target_pose, mode):
258
+ logs, video_masked = run_epic_inference(video_path, fps, num_frames, target_pose, mode)
259
+ return logs, video_masked
260
  result_dir = print_output_directory("/app/output_anchor")
261
 
262
 
 
291
  "--controlnet_transformer_num_layers", "8",
292
  "--infer_with_mask",
293
  "--pool_style", "max",
294
+ "--seed", "43",
295
+ "--fps", fps
296
  ]
297
 
298
  result = subprocess.run(command, capture_output=True, text=True)
inference/v2v_data/demo.py CHANGED
@@ -180,8 +180,8 @@ class GetAnchorVideos:
180
  mask_save = process_mask_tensor(torch.cat(masks)).squeeze().cpu().numpy()
181
  np.save(f"{opts.out_dir}/depth/{save_name}.npy",depths.cpu().numpy())
182
  np.savez_compressed(f"{opts.out_dir}/masks/{save_name}.npz",mask=mask_save)
183
- save_video_as_mp4(ori_video_save,f"{opts.out_dir}/videos/{save_name}.mp4", fps=8)
184
- save_video_as_mp4(cond_video_save,f"{opts.out_dir}/masked_videos/{save_name}.mp4", fps=8)
185
  np.save(f'{opts.out_dir}/post_t/' + save_name + '.npy',pose_t.cpu().numpy())
186
  np.save(f'{opts.out_dir}/pose_s/' + save_name + '.npy',pose_s.cpu().numpy())
187
  np.save(f'{opts.out_dir}/intrinsics/' + save_name + '.npy',K[0].cpu().numpy())
 
180
  mask_save = process_mask_tensor(torch.cat(masks)).squeeze().cpu().numpy()
181
  np.save(f"{opts.out_dir}/depth/{save_name}.npy",depths.cpu().numpy())
182
  np.savez_compressed(f"{opts.out_dir}/masks/{save_name}.npz",mask=mask_save)
183
+ save_video_as_mp4(ori_video_save,f"{opts.out_dir}/videos/{save_name}.mp4", fps=opts.fps)
184
+ save_video_as_mp4(cond_video_save,f"{opts.out_dir}/masked_videos/{save_name}.mp4", fps=opts.fps)
185
  np.save(f'{opts.out_dir}/post_t/' + save_name + '.npy',pose_t.cpu().numpy())
186
  np.save(f'{opts.out_dir}/pose_s/' + save_name + '.npy',pose_s.cpu().numpy())
187
  np.save(f'{opts.out_dir}/intrinsics/' + save_name + '.npy',K[0].cpu().numpy())