File size: 11,349 Bytes
f42f083 15db18d f42f083 9dee6f7 f42f083 ba201a1 f42f083 ba201a1 15db18d f42f083 ba201a1 f42f083 ba201a1 f42f083 ba201a1 f42f083 73d134f f42f083 ba201a1 bd39eaa ba201a1 c4283d3 ba201a1 f42f083 ba201a1 f42f083 ba201a1 f42f083 ba201a1 f42f083 e0df45d f42f083 ba201a1 f42f083 ba201a1 f42f083 c920a94 fc8ac82 c920a94 fc8ac82 47f4b64 fc8ac82 f42f083 ba201a1 f42f083 ba201a1 8eeb1c7 ba201a1 2d59f81 ba201a1 f42f083 d2c2859 ba201a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import subprocess
from datetime import datetime
from pathlib import Path
import gradio as gr
import numpy as np
# -----------------------------
# Setup paths and env
# -----------------------------
HF_HOME = "/app/hf_cache"
os.environ["HF_HOME"] = HF_HOME
os.environ["TRANSFORMERS_CACHE"] = HF_HOME
os.makedirs(HF_HOME, exist_ok=True)
PRETRAINED_DIR = "/app/pretrained"
os.makedirs(PRETRAINED_DIR, exist_ok=True)
# -----------------------------
# Step 1: Optional Model Download
# -----------------------------
def download_models():
expected_model = os.path.join(PRETRAINED_DIR, "RAFT/raft-things.pth")
if not Path(expected_model).exists():
print("⚙️ Downloading pretrained models...")
try:
subprocess.check_call(["bash", "download/download_models.sh"])
print("✅ Models downloaded.")
except subprocess.CalledProcessError as e:
print(f"❌ Model download failed: {e}")
else:
print("✅ Pretrained models already exist.")
# -----------------------------
# Step 1: Get Anchor Video
# -----------------------------
def get_anchor_video(video_path, fps, num_frames, target_pose, mode,
radius_scale, near_far_estimated,
sampler_name, diffusion_guidance_scale, diffusion_inference_steps,
prompt, negative_prompt, refine_prompt,
depth_inference_steps, depth_guidance_scale,
window_size, overlap, max_res, sample_size, seed_input, height, width):
temp_input_path = "/app/temp_input.mp4"
output_dir = "/app/output_anchor"
video_output_path = f"{output_dir}/masked_videos/output.mp4"
if video_path:
os.system(f"cp '{video_path}' {temp_input_path}")
try:
theta, phi, r, x, y = target_pose.strip().split()
except ValueError:
return f"Invalid target pose format. Use: θ φ r x y", None, None
logs = f"Running inference with target pose: θ={theta}, φ={phi}, r={r}, x={x}, y={y}\n"
# INTEGRATE HEIGHT AND WIDTH PARAMETERS
command = [
"python", "/app/inference/v2v_data/inference.py",
"--video_path", temp_input_path,
"--stride", "1",
"--out_dir", output_dir,
"--radius_scale", str(radius_scale),
"--camera", "target",
"--mask",
"--target_pose", theta, phi, r, x, y,
"--video_length", str(num_frames),
"--save_name", "output",
"--mode", mode,
"--fps", str(fps),
"--depth_inference_steps", str(depth_inference_steps),
"--depth_guidance_scale", str(depth_guidance_scale),
# "--near_far_estimated", str(near_far_estimated),
"--sampler_name", sampler_name,
"--diffusion_guidance_scale", str(diffusion_guidance_scale),
"--diffusion_inference_steps", str(diffusion_inference_steps),
"--prompt", prompt if prompt else "",
"--negative_prompt", negative_prompt,
"--refine_prompt", refine_prompt,
"--window_size", str(window_size),
"--overlap", str(overlap),
"--max_res", str(max_res),
# "--sample_size", sample_size if sample_size else "384,672",
"--seed", str(seed_input),
"--height", str(height), # Fixed height
"--width", str(width)
]
try:
result = subprocess.run(command, capture_output=True, text=True, check=True)
logs += result.stdout
except subprocess.CalledProcessError as e:
logs += f"❌ Inference failed:\n{e.stderr}{e.stdout}"
return None, logs
return str(video_output_path), logs
# -----------------------------
# Step 2: Run Inference
# -----------------------------
def inference(
fps, num_frames, controlnet_weights, controlnet_guidance_start,
controlnet_guidance_end, guidance_scale, num_inference_steps, dtype,
seed, height, width, downscale_coef, vae_channels,
controlnet_input_channels, controlnet_transformer_num_layers
):
MODEL_PATH = "/app/pretrained/CogVideoX-5b-I2V"
ckpt_path = "/app/out/EPiC_pretrained/checkpoint-500.pt"
video_root_dir = "/app/output_anchor"
out_dir = "/app/output"
command = [
"python", "/app/inference/cli_demo_camera_i2v_pcd.py",
"--video_root_dir", video_root_dir,
"--base_model_path", MODEL_PATH,
"--controlnet_model_path", ckpt_path,
"--output_path", out_dir,
"--controlnet_weights", str(controlnet_weights),
"--controlnet_guidance_start", str(controlnet_guidance_start),
"--controlnet_guidance_end", str(controlnet_guidance_end),
"--guidance_scale", str(guidance_scale),
"--num_inference_steps", str(num_inference_steps),
"--dtype", dtype,
"--seed", str(seed),
"--height", str(height),
"--width", str(width),
"--num_frames", str(num_frames),
"--fps", str(fps),
"--downscale_coef", str(downscale_coef),
"--vae_channels", str(vae_channels),
"--controlnet_input_channels", str(controlnet_input_channels),
"--controlnet_transformer_num_layers", str(controlnet_transformer_num_layers)
]
try:
result = subprocess.run(command, capture_output=True, text=True, check=True)
logs = result.stdout
except subprocess.CalledProcessError as e:
logs = f"❌ Step 2 Inference Failed:\nSTDERR:\n{e.stderr}\nSTDOUT:\n{e.stdout}"
return None, logs
video_output = f"{out_dir}/00000_{seed}_out.mp4"
return video_output if os.path.exists(video_output) else None, logs
# -----------------------------
# UI
# -----------------------------
demo = gr.Blocks()
with demo:
gr.Markdown("## 🎬 EPiC: Cinematic Camera Control")
with gr.Tabs():
with gr.TabItem("Step 1: Camera Anchor"):
with gr.Row():
with gr.Column():
with gr.Row():
near_far_estimated = gr.Checkbox(label="Near Far Estimation", value=True) # integrate it with
pose_input = gr.Textbox(label="Target Pose (θ φ r x y)", placeholder="e.g., 0 30 -0.6 0 0")
fps_input = gr.Number(value=24, label="FPS")
num_frames_input = gr.Number(value=49, label="Number of Frames")
radius_input = gr.Number(value = 1.0, label="Radius Scale")
mode_input = gr.Dropdown(choices=["gradual", "direct", "bullet"], value="gradual", label="Camera Mode")
sampler_input = gr.Dropdown(choices=["Euler", "Euler A", "DPM++", "PNDM", "DDIM_Cog", "DDIM_Origin"], value="DDIM_Origin", label="Sampler")
diff_guidance_input = gr.Number(value=6.0, label="Diffusion Guidance")
diff_steps_input = gr.Number(value=50, label="Diffusion Steps")
depth_steps_input = gr.Number(value=5, label="Depth Steps")
depth_guidance_input = gr.Number(value=1.0, label="Depth Guidance")
window_input = gr.Number(value=64, label="Window Size")
overlap_input = gr.Number(value=25, label="Overlap")
maxres_input = gr.Number(value=1920, label="Max Resolution")
sample_size = gr.Textbox(label="Sample Size (height, width)", placeholder="e.g., 384, 672", value="384, 672")
seed_input = gr.Number(value=43, label="Seed")
height = gr.Number(value=576, label="Height")
width = gr.Number(value=1024, label="Width")
prompt_input = gr.Textbox(label="Prompt")
neg_prompt_input = gr.Textbox(label="Negative Prompt", value="The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory.")
refine_prompt_input = gr.Textbox(label="Refine Prompt", value=" The video is of high quality, and the view is very clear. ")
with gr.Column():
video_input = gr.Video(label="Upload Video (MP4)")
step1_button = gr.Button("▶️ Run Step 1")
step1_video = gr.Video(label="[Step 1] Masked Video")
step1_logs = gr.Textbox(label="[Step 1] Logs")
with gr.TabItem("Step 2: CogVideoX Refinement"):
with gr.Row():
with gr.Column():
with gr.Row():
controlnet_weights_input = gr.Number(value=0.5, label="ControlNet Weights")
controlnet_guidance_start_input = gr.Number(value=0.0, label="Guidance Start")
controlnet_guidance_end_input = gr.Number(value=0.5, label="Guidance End")
guidance_scale_input = gr.Number(value=6.0, label="Guidance Scale")
inference_steps_input = gr.Number(value=50, label="Num Inference Steps")
dtype_input = gr.Dropdown(choices=["float16", "bfloat16"], value="bfloat16", label="Compute Dtype")
seed_input2 = gr.Number(value=42, label="Seed")
height_input = gr.Number(value=480, label="Height")
width_input = gr.Number(value=720, label="Width")
num_frames_input2 = gr.Number(value=49, label="Num Frames")
fps_input2 = gr.Number(value=8, label="FPS")
downscale_coef_input = gr.Number(value=8, label="Downscale Coef")
vae_channels_input = gr.Number(value=16, label="VAE Channels")
controlnet_input_channels_input = gr.Number(value=6, label="ControlNet Input Channels")
controlnet_layers_input = gr.Number(value=8, label="ControlNet Transformer Layers")
with gr.Column():
step2_video = gr.Video(label="[Step 2] Final Refined Video")
step2_button = gr.Button("▶️ Run Step 2")
step2_logs = gr.Textbox(label="[Step 2] Logs")
step1_button.click(
get_anchor_video,
inputs=[
video_input, fps_input, num_frames_input, pose_input, mode_input,
radius_input, near_far_estimated,
sampler_input, diff_guidance_input, diff_steps_input,
prompt_input, neg_prompt_input, refine_prompt_input,
depth_steps_input, depth_guidance_input,
window_input, overlap_input, maxres_input, sample_size, seed_input, height, width
],
outputs=[step1_video, step1_logs]
)
step2_button.click(
inference,
inputs=[
fps_input2, num_frames_input2,
controlnet_weights_input, controlnet_guidance_start_input,
controlnet_guidance_end_input, guidance_scale_input,
inference_steps_input, dtype_input, seed_input2,
height_input, width_input, downscale_coef_input,
vae_channels_input, controlnet_input_channels_input,
controlnet_layers_input
],
outputs=[step2_video, step2_logs]
)
if __name__ == "__main__":
download_models()
demo.launch(server_name="0.0.0.0", server_port=7860) |