Update README.md
Browse files
README.md
CHANGED
@@ -1,260 +1,13 @@
|
|
1 |
-
# DOVE: Efficient One-Step Diffusion Model for Real-World Video Super-Resolution
|
2 |
-
|
3 |
-
[Zheng Chen](https://zhengchen1999.github.io/), [Zichen Zou](https://github.com/zzctmd), [Kewei Zhang](), [Xiongfei Su](https://ieeexplore.ieee.org/author/37086348852), [Xin Yuan](https://en.westlake.edu.cn/faculty/xin-yuan.html), [Yong Guo](https://www.guoyongcs.com/), and [Yulun Zhang](http://yulunzhang.com/), "DOVE: Efficient One-Step Diffusion Model for Real-World Video Super-Resolution", 2025
|
4 |
-
|
5 |
-
<div>
|
6 |
-
<a href="https://github.com/zhengchen1999/DOVE/releases" target='_blank' style="text-decoration: none;"><img src="https://img.shields.io/github/downloads/zhengchen1999/DOVE/total?color=green&style=flat"></a>
|
7 |
-
<a href="https://github.com/zhengchen1999/DOVE" target='_blank' style="text-decoration: none;"><img src="https://visitor-badge.laobi.icu/badge?page_id=zhengchen1999/DOVE"></a>
|
8 |
-
<a href="https://github.com/zhengchen1999/DOVE/stargazers" target='_blank' style="text-decoration: none;"><img src="https://img.shields.io/github/stars/zhengchen1999/DOVE?style=social"></a>
|
9 |
-
</div>
|
10 |
-
|
11 |
-
|
12 |
-
[[arXiv](https://arxiv.org/abs/2505.16239)] [[supplementary material](https://github.com/zhengchen1999/DOVE/releases/download/v1/Supplementary_Material.pdf)] [[dataset](https://drive.google.com/drive/folders/1e7CyNzfJBa2saWvPr2HI2q_FJhLIc-Ww?usp=drive_link)] [[pretrained models](https://drive.google.com/drive/folders/1wj9jY0fn6prSWJ7BjJOXfxC0bs8skKbQ?usp=sharing)]
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
#### 🔥🔥🔥 News
|
17 |
-
|
18 |
-
- **2025-6-09:** Test datasets, inference scripts, and pretrained models are available. ⭐️⭐️⭐️
|
19 |
-
- **2025-5-22:** This repo is released.
|
20 |
-
|
21 |
---
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
28 |
---
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
<table border="0" style="width: 100%; text-align: center; margin-top: 20px;">
|
33 |
-
<tr>
|
34 |
-
<td>
|
35 |
-
<video src="https://github.com/user-attachments/assets/4ad0ca78-6cca-48c0-95a5-5d5554093f7d" controls autoplay loop></video>
|
36 |
-
</td>
|
37 |
-
<td>
|
38 |
-
<video src="https://github.com/user-attachments/assets/e5b5d247-28af-43fd-b32c-1f1b5896d9e7" controls autoplay loop></video>
|
39 |
-
</td>
|
40 |
-
</tr>
|
41 |
-
</table>
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
---
|
47 |
-
|
48 |
-
### Training Strategy
|
49 |
-
|
50 |
-

|
51 |
-
|
52 |
-
---
|
53 |
-
|
54 |
-
### Video Processing Pipeline
|
55 |
-
|
56 |
-

|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
## 🔖 TODO
|
62 |
-
|
63 |
-
- [x] Release testing code.
|
64 |
-
- [x] Release pre-trained models.
|
65 |
-
- [ ] Release training code.
|
66 |
-
- [ ] Release video processing pipeline.
|
67 |
-
- [ ] Release HQ-VSR dataset.
|
68 |
-
- [ ] Provide WebUI.
|
69 |
-
- [ ] Provide HuggingFace demo.
|
70 |
-
|
71 |
-
## ⚙️ Dependencies
|
72 |
-
|
73 |
-
- Python 3.11
|
74 |
-
- PyTorch\>=2.5.0
|
75 |
-
- Diffusers
|
76 |
-
|
77 |
-
```bash
|
78 |
-
# Clone the github repo and go to the default directory 'DOVE'.
|
79 |
-
git clone https://github.com/zhengchen1999/DOVE.git
|
80 |
-
conda create -n DOVE python=3.11
|
81 |
-
conda activate DOVE
|
82 |
-
pip install -r requirements.txt
|
83 |
-
pip install diffusers["torch"] transformers
|
84 |
-
pip install pyiqa
|
85 |
-
```
|
86 |
-
|
87 |
-
## 🔗 Contents
|
88 |
-
|
89 |
-
1. [Datasets](#datasets)
|
90 |
-
1. [Models](#models)
|
91 |
-
1. Training
|
92 |
-
1. [Testing](#testing)
|
93 |
-
1. [Results](#results)
|
94 |
-
1. [Acknowledgements](#acknowledgements)
|
95 |
-
|
96 |
-
## <a name="datasets"></a>📁 Datasets
|
97 |
-
|
98 |
-
### 🗳️ Test Datasets
|
99 |
-
|
100 |
-
We provide several real-world and synthetic test datasets for evaluation. All datasets follow a consistent directory structure:
|
101 |
-
|
102 |
-
| Dataset | Type | # Num | Download |
|
103 |
-
| :------ | :--------: | :---: | :----------------------------------------------------------: |
|
104 |
-
| UDM10 | Synthetic | 10 | [Google Drive](https://drive.google.com/file/d/1AmGVSCwMm_OFPd3DKgNyTwj0GG2H-tG4/view?usp=drive_link) |
|
105 |
-
| SPMCS | Synthetic | 30 | [Google Drive](https://drive.google.com/file/d/1b2uktCFPKS-R1fTecWcLFcOnmUFIBNWT/view?usp=drive_link) |
|
106 |
-
| YouHQ40 | Synthetic | 40 | [Google Drive](https://drive.google.com/file/d/1zO23UCStxL3htPJQcDUUnUeMvDrysLTh/view?usp=sharing) |
|
107 |
-
| RealVSR | Real-world | 50 | [Google Drive](https://drive.google.com/file/d/1wr4tTiCvQlqdYPeU1dmnjb5KFY4VjGCO/view?usp=drive_link) |
|
108 |
-
| MVSR4x | Real-world | 15 | [Google Drive](https://drive.google.com/file/d/16sesBD_9Xx_5Grtx18nosBw1w94KlpQt/view?usp=drive_link) |
|
109 |
-
| VideoLQ | Real-world | 50 | [Google Drive](https://drive.google.com/file/d/1lh0vkU_llxE0un1OigJ0DWPQwt1i68Vn/view?usp=drive_link) |
|
110 |
-
|
111 |
-
All datasets are hosted on [here](https://drive.google.com/drive/folders/1yNKG6rtTNtZQY8qL74GoQwA0jgjBUEby?usp=sharing). Make sure the path is correct (`datasets/test/`) before running inference.
|
112 |
-
|
113 |
-
The directory structure is as follows:
|
114 |
-
|
115 |
-
```shell
|
116 |
-
datasets/
|
117 |
-
└── test/
|
118 |
-
└── [DatasetName]/
|
119 |
-
├── GT/ # Ground Truth: folder of high-quality frames (one per clip)
|
120 |
-
├── GT-Video/ # Ground Truth (video version): lossless MKV format
|
121 |
-
├── LQ/ # Low-quality Input: folder of degraded frames (one per clip)
|
122 |
-
└── LQ-Video/ # Low-Quality Input (video version): lossless MKV format
|
123 |
-
```
|
124 |
-
|
125 |
-
## <a name="models"></a>📦 Models
|
126 |
-
|
127 |
-
We provide pretrained weights for DOVE and DOVE-2B.
|
128 |
-
|
129 |
-
| Model Name | Description | HuggingFace | Google Drive | Visual Results |
|
130 |
-
| :--------- | :-------------------------------------: | :---------: | :----------------------------------------------------------: | ------------------------------------------------------------ |
|
131 |
-
| DOVE | Base version, built on CogVideoX1.5-5B; | TODO | [Download](https://drive.google.com/file/d/1Nl3XoJndMtpu6KPFcskUTkI0qWBiSXF2/view?usp=drive_link) | [Download](https://drive.google.com/drive/folders/1J92X1amVijH9dNWGQcz-6Cx44B7EipWr?usp=drive_link) |
|
132 |
-
| DOVE-2B | Smaller version, based on CogVideoX-2B | TODO | TODO | TODO |
|
133 |
-
|
134 |
-
> Place downloaded model files into the `pretrained_models/` folder, e.g., `pretrained_models/DOVE`.
|
135 |
-
|
136 |
-
## <a name="testing"></a>🔨 Testing
|
137 |
-
|
138 |
-
We provide inference commands below. Before running, make sure to download the corresponding pretrained models and test datasets.
|
139 |
-
|
140 |
-
For more options and usage, please refer to [inference_script.py](inference_script.py).
|
141 |
-
|
142 |
-
The full testing commands are provided in the shell script: [inference.sh](inference.sh).
|
143 |
-
|
144 |
-
```shell
|
145 |
-
# 🔹 Demo inference
|
146 |
-
python inference_script.py \
|
147 |
-
--input_dir datasets/demo \
|
148 |
-
--model_path pretrained_models/DOVE \
|
149 |
-
--output_path results/DOVE/demo \
|
150 |
-
--is_vae_st \
|
151 |
-
--save_format yuv420p
|
152 |
-
|
153 |
-
# 🔹 Reproduce paper results
|
154 |
-
python inference_script.py \
|
155 |
-
--input_dir datasets/test/UDM10/LQ-Video \
|
156 |
-
--model_path pretrained_models/DOVE \
|
157 |
-
--output_path results/DOVE/UDM10 \
|
158 |
-
--is_vae_st \
|
159 |
-
|
160 |
-
# 🔹 Evaluate quantitative metrics
|
161 |
-
python eval_metrics.py \
|
162 |
-
--gt datasets/test/UDM10/GT \
|
163 |
-
--pred results/DOVE/UDM10 \
|
164 |
-
--metrics psnr,ssim,lpips,dists,clipiqa
|
165 |
-
```
|
166 |
-
|
167 |
-
> 💡 If you encounter out-of-memory (OOM) issues, you can enable chunk-based testing by setting the following parameters: tile_size_hw, overlap_hw, chunk_len, and overlap_t.
|
168 |
-
>
|
169 |
-
> 💡 Default save format is `yuv444p`. If playback fails, try `save_format=yuv420p` (may slightly affect metrics).
|
170 |
-
>
|
171 |
-
> **TODO:** Add metric computation scripts for FasterVQA, DOVER, and $E^*_{warp}$.
|
172 |
-
|
173 |
-
## <a name="results"></a>🔎 Results
|
174 |
-
|
175 |
-
We achieve state-of-the-art performance on real-world video super-resolution. Visual results are available at [Google Drive](https://drive.google.com/drive/folders/1J92X1amVijH9dNWGQcz-6Cx44B7EipWr?usp=drive_link).
|
176 |
-
|
177 |
-
<details open>
|
178 |
-
<summary>Quantitative Results (click to expand)</summary>
|
179 |
-
|
180 |
-
- Results in Tab. 2 of the main paper
|
181 |
-
|
182 |
-
<p align="center">
|
183 |
-
<img width="900" src="assets/Quantitative.png">
|
184 |
-
</p>
|
185 |
-
|
186 |
-
</details>
|
187 |
-
|
188 |
-
<details open>
|
189 |
-
<summary>Qualitative Results (click to expand)</summary>
|
190 |
-
|
191 |
-
- Results in Fig. 4 of the main paper
|
192 |
-
|
193 |
-
<p align="center">
|
194 |
-
<img width="900" src="assets/Qualitative-1.png">
|
195 |
-
</p>
|
196 |
-
<details>
|
197 |
-
<summary>More Qualitative Results</summary>
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
- More results in Fig. 3 of the supplementary material
|
203 |
-
|
204 |
-
<p align="center">
|
205 |
-
<img width="900" src="assets/Qualitative-2-1.png">
|
206 |
-
</p>
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
- More results in Fig. 4 of the supplementary material
|
211 |
-
|
212 |
-
<p align="center">
|
213 |
-
<img width="900" src="assets/Qualitative-2-2.png">
|
214 |
-
</p>
|
215 |
-
|
216 |
-
|
217 |
-
- More results in Fig. 5 of the supplementary material
|
218 |
-
|
219 |
-
<p align="center">
|
220 |
-
<img width="900" src="assets/Qualitative-3-1.png">
|
221 |
-
<img width="900" src="assets/Qualitative-3-2.png">
|
222 |
-
</p>
|
223 |
-
|
224 |
-
|
225 |
-
- More results in Fig. 6 of the supplementary material
|
226 |
-
|
227 |
-
<p align="center">
|
228 |
-
<img width="900" src="assets/Qualitative-4-1.png">
|
229 |
-
<img width="900" src="assets/Qualitative-4-2.png">
|
230 |
-
</p>
|
231 |
-
|
232 |
-
|
233 |
-
- More results in Fig. 7 of the supplementary material
|
234 |
-
|
235 |
-
<p align="center">
|
236 |
-
<img width="900" src="assets/Qualitative-5-1.png">
|
237 |
-
<img width="900" src="assets/Qualitative-5-2.png">
|
238 |
-
</p>
|
239 |
-
|
240 |
-
</details>
|
241 |
-
|
242 |
-
</details>
|
243 |
-
|
244 |
-
## <a name="citation"></a>📎 Citation
|
245 |
-
|
246 |
-
If you find the code helpful in your research or work, please cite the following paper(s).
|
247 |
-
|
248 |
-
```
|
249 |
-
@article{chen2025dove,
|
250 |
-
title={DOVE: Efficient One-Step Diffusion Model for Real-World Video Super-Resolution},
|
251 |
-
author={Chen, Zheng and Zou, Zichen and Zhang, Kewei and Su, Xiongfei and Yuan, Xin and Guo, Yong and Zhang, Yulun},
|
252 |
-
journal={arXiv preprint arXiv:2505.16239},
|
253 |
-
year={2025}
|
254 |
-
}
|
255 |
-
```
|
256 |
-
|
257 |
-
## <a name="acknowledgements"></a>💡 Acknowledgements
|
258 |
-
|
259 |
-
This project is based on [CogVideo](https://github.com/THUDM/CogVideo) and [Open-Sora](https://github.com/hpcaitech/Open-Sora).
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Dove
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.35.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|