File size: 26,741 Bytes
49f0d37 c6789b3 49f0d37 c6789b3 49f0d37 bd4af33 49f0d37 3e33ccd 49f0d37 cc317e3 ef1737d 49f0d37 2ae859b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
from pathlib import Path
import argparse
import logging
import torch
from torchvision import transforms
from torchvision.io import write_video
from tqdm import tqdm
from diffusers import (
CogVideoXDPMScheduler,
CogVideoXPipeline,
)
from transformers import set_seed
from typing import Dict, Tuple
from diffusers.models.embeddings import get_3d_rotary_pos_embed
import json
import os
import cv2
from PIL import Image
from pathlib import Path
import pyiqa
import imageio.v3 as iio
import glob
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort:skip
decord.bridge.set_bridge("torch")
logging.basicConfig(level=logging.INFO)
# 0 ~ 1
to_tensor = transforms.ToTensor()
video_exts = ['.mp4', '.avi', '.mov', '.mkv']
fr_metrics = ['psnr', 'ssim', 'lpips', 'dists']
def no_grad(func):
def wrapper(*args, **kwargs):
with torch.no_grad():
return func(*args, **kwargs)
return wrapper
def is_video_file(filename):
return any(filename.lower().endswith(ext) for ext in video_exts)
def read_video_frames(video_path):
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(to_tensor(Image.fromarray(rgb)))
cap.release()
return torch.stack(frames)
def read_image_folder(folder_path):
image_files = sorted([
os.path.join(folder_path, f) for f in os.listdir(folder_path)
if f.lower().endswith(('.png', '.jpg', '.jpeg'))
])
frames = [to_tensor(Image.open(p).convert("RGB")) for p in image_files]
return torch.stack(frames)
def load_sequence(path):
# return a tensor of shape [F, C, H, W] // 0, 1
if os.path.isdir(path):
return read_image_folder(path)
elif os.path.isfile(path):
if is_video_file(path):
return read_video_frames(path)
elif path.lower().endswith(('.png', '.jpg', '.jpeg')):
# Treat image as a single-frame video
img = to_tensor(Image.open(path).convert("RGB"))
return img.unsqueeze(0) # [1, C, H, W]
raise ValueError(f"Unsupported input: {path}")
@no_grad
def compute_metrics(pred_frames, gt_frames, metrics_model, metric_accumulator, file_name):
print(f"\n\n[{file_name}] Metrics:", end=" ")
for name, model in metrics_model.items():
scores = []
for i in range(pred_frames.shape[0]):
pred = pred_frames[i].unsqueeze(0)
if gt_frames != None:
gt = gt_frames[i].unsqueeze(0)
if name in fr_metrics:
score = model(pred, gt).item()
else:
score = model(pred).item()
scores.append(score)
val = sum(scores) / len(scores)
metric_accumulator[name].append(val)
print(f"{name.upper()}={val:.4f}", end=" ")
print()
def save_frames_as_png(video, output_dir, fps=8):
"""
Save video frames as PNG sequence.
Args:
video (torch.Tensor): shape [B, C, F, H, W], float in [0, 1]
output_dir (str): directory to save PNG files
fps (int): kept for API compatibility
"""
video = video[0] # Remove batch dimension
video = video.permute(1, 2, 3, 0) # [F, H, W, C]
os.makedirs(output_dir, exist_ok=True)
frames = (video * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()
for i, frame in enumerate(frames):
filename = os.path.join(output_dir, f"{i:03d}.png")
Image.fromarray(frame).save(filename)
def save_video_with_imageio_lossless(video, output_path, fps=8):
"""
Save a video tensor to .mkv using imageio.v3.imwrite with ffmpeg backend.
Args:
video (torch.Tensor): shape [B, C, F, H, W], float in [0, 1]
output_path (str): where to save the .mkv file
fps (int): frames per second
"""
video = video[0]
video = video.permute(1, 2, 3, 0)
frames = (video * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()
iio.imwrite(
output_path,
frames,
fps=fps,
codec='libx264rgb',
pixelformat='rgb24',
macro_block_size=None,
ffmpeg_params=['-crf', '0'],
)
def save_video_with_imageio(video, output_path, fps=8, format='yuv444p'):
"""
Save a video tensor to .mp4 using imageio.v3.imwrite with ffmpeg backend.
Args:
video (torch.Tensor): shape [B, C, F, H, W], float in [0, 1]
output_path (str): where to save the .mp4 file
fps (int): frames per second
"""
video = video[0]
video = video.permute(1, 2, 3, 0)
frames = (video * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()
if format == 'yuv444p':
iio.imwrite(
output_path,
frames,
fps=fps,
codec='libx264',
pixelformat='yuv444p',
macro_block_size=None,
ffmpeg_params=['-crf', '0'],
)
else:
iio.imwrite(
output_path,
frames,
fps=fps,
codec='libx264',
pixelformat='yuv420p',
macro_block_size=None,
ffmpeg_params=['-crf', '10'],
)
def preprocess_video_match(
video_path: Path | str,
is_match: bool = False,
) -> torch.Tensor:
"""
Loads a single video.
Args:
video_path: Path to the video file.
Returns:
A torch.Tensor with shape [F, C, H, W] where:
F = number of frames
C = number of channels (3 for RGB)
H = height
W = width
"""
if isinstance(video_path, str):
video_path = Path(video_path)
video_reader = decord.VideoReader(uri=video_path.as_posix())
video_num_frames = len(video_reader)
frames = video_reader.get_batch(list(range(video_num_frames)))
F, H, W, C = frames.shape
original_shape = (F, H, W, C)
pad_f = 0
pad_h = 0
pad_w = 0
if is_match:
remainder = (F - 1) % 8
if remainder != 0:
last_frame = frames[-1:]
pad_f = 8 - remainder
repeated_frames = last_frame.repeat(pad_f, 1, 1, 1)
frames = torch.cat([frames, repeated_frames], dim=0)
pad_h = (16 - H % 16) % 16
pad_w = (16 - W % 16) % 16
if pad_h > 0 or pad_w > 0:
# pad = (w_left, w_right, h_top, h_bottom)
frames = torch.nn.functional.pad(frames, pad=(0, 0, 0, pad_w, 0, pad_h)) # pad right and bottom
# to F, C, H, W
return frames.float().permute(0, 3, 1, 2).contiguous(), pad_f, pad_h, pad_w, original_shape
def remove_padding_and_extra_frames(video, pad_F, pad_H, pad_W):
if pad_F > 0:
video = video[:, :, :-pad_F, :, :]
if pad_H > 0:
video = video[:, :, :, :-pad_H, :]
if pad_W > 0:
video = video[:, :, :, :, :-pad_W]
return video
def make_temporal_chunks(F, chunk_len, overlap_t=8):
"""
Args:
F: total number of frames
chunk_len: int, chunk length in time (excluding overlap)
overlap: int, number of overlapping frames between chunks
Returns:
time_chunks: List of (start_t, end_t) tuples
"""
if chunk_len == 0:
return [(0, F)]
effective_stride = chunk_len - overlap_t
if effective_stride <= 0:
raise ValueError("chunk_len must be greater than overlap")
chunk_starts = list(range(0, F - overlap_t, effective_stride))
if chunk_starts[-1] + chunk_len < F:
chunk_starts.append(F - chunk_len)
time_chunks = []
for i, t_start in enumerate(chunk_starts):
t_end = min(t_start + chunk_len, F)
time_chunks.append((t_start, t_end))
if len(time_chunks) >= 2 and time_chunks[-1][1] - time_chunks[-1][0] < chunk_len:
last = time_chunks.pop()
prev_start, _ = time_chunks[-1]
time_chunks[-1] = (prev_start, last[1])
return time_chunks
def make_spatial_tiles(H, W, tile_size_hw, overlap_hw=(32, 32)):
"""
Args:
H, W: height and width of the frame
tile_size_hw: Tuple (tile_height, tile_width)
overlap_hw: Tuple (overlap_height, overlap_width)
Returns:
spatial_tiles: List of (start_h, end_h, start_w, end_w) tuples
"""
tile_height, tile_width = tile_size_hw
overlap_h, overlap_w = overlap_hw
if tile_height == 0 or tile_width == 0:
return [(0, H, 0, W)]
tile_stride_h = tile_height - overlap_h
tile_stride_w = tile_width - overlap_w
if tile_stride_h <= 0 or tile_stride_w <= 0:
raise ValueError("Tile size must be greater than overlap")
h_tiles = list(range(0, H - overlap_h, tile_stride_h))
if not h_tiles or h_tiles[-1] + tile_height < H:
h_tiles.append(H - tile_height)
# Merge last row if needed
if len(h_tiles) >= 2 and h_tiles[-1] + tile_height > H:
h_tiles.pop()
w_tiles = list(range(0, W - overlap_w, tile_stride_w))
if not w_tiles or w_tiles[-1] + tile_width < W:
w_tiles.append(W - tile_width)
# Merge last column if needed
if len(w_tiles) >= 2 and w_tiles[-1] + tile_width > W:
w_tiles.pop()
spatial_tiles = []
for h_start in h_tiles:
h_end = min(h_start + tile_height, H)
if h_end + tile_stride_h > H:
h_end = H
for w_start in w_tiles:
w_end = min(w_start + tile_width, W)
if w_end + tile_stride_w > W:
w_end = W
spatial_tiles.append((h_start, h_end, w_start, w_end))
return spatial_tiles
def get_valid_tile_region(t_start, t_end, h_start, h_end, w_start, w_end,
video_shape, overlap_t, overlap_h, overlap_w):
_, _, F, H, W = video_shape
t_len = t_end - t_start
h_len = h_end - h_start
w_len = w_end - w_start
valid_t_start = 0 if t_start == 0 else overlap_t // 2
valid_t_end = t_len if t_end == F else t_len - overlap_t // 2
valid_h_start = 0 if h_start == 0 else overlap_h // 2
valid_h_end = h_len if h_end == H else h_len - overlap_h // 2
valid_w_start = 0 if w_start == 0 else overlap_w // 2
valid_w_end = w_len if w_end == W else w_len - overlap_w // 2
out_t_start = t_start + valid_t_start
out_t_end = t_start + valid_t_end
out_h_start = h_start + valid_h_start
out_h_end = h_start + valid_h_end
out_w_start = w_start + valid_w_start
out_w_end = w_start + valid_w_end
return {
"valid_t_start": valid_t_start, "valid_t_end": valid_t_end,
"valid_h_start": valid_h_start, "valid_h_end": valid_h_end,
"valid_w_start": valid_w_start, "valid_w_end": valid_w_end,
"out_t_start": out_t_start, "out_t_end": out_t_end,
"out_h_start": out_h_start, "out_h_end": out_h_end,
"out_w_start": out_w_start, "out_w_end": out_w_end,
}
def prepare_rotary_positional_embeddings(
height: int,
width: int,
num_frames: int,
transformer_config: Dict,
vae_scale_factor_spatial: int,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor]:
grid_height = height // (vae_scale_factor_spatial * transformer_config.patch_size)
grid_width = width // (vae_scale_factor_spatial * transformer_config.patch_size)
if transformer_config.patch_size_t is None:
base_num_frames = num_frames
else:
base_num_frames = (
num_frames + transformer_config.patch_size_t - 1
) // transformer_config.patch_size_t
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
embed_dim=transformer_config.attention_head_dim,
crops_coords=None,
grid_size=(grid_height, grid_width),
temporal_size=base_num_frames,
grid_type="slice",
max_size=(grid_height, grid_width),
device=device,
)
return freqs_cos, freqs_sin
@no_grad
def process_video(
pipe: CogVideoXPipeline,
video: torch.Tensor,
prompt: str = '',
noise_step: int = 0,
sr_noise_step: int = 399,
):
# SR the video frames based on the prompt.
# `num_frames` is the Number of frames to generate.
# Decode video
video = video.to(pipe.vae.device, dtype=pipe.vae.dtype)
latent_dist = pipe.vae.encode(video).latent_dist
latent = latent_dist.sample() * pipe.vae.config.scaling_factor
patch_size_t = pipe.transformer.config.patch_size_t
if patch_size_t is not None:
ncopy = latent.shape[2] % patch_size_t
# Copy the first frame ncopy times to match patch_size_t
first_frame = latent[:, :, :1, :, :] # Get first frame [B, C, 1, H, W]
latent = torch.cat([first_frame.repeat(1, 1, ncopy, 1, 1), latent], dim=2)
assert latent.shape[2] % patch_size_t == 0
batch_size, num_channels, num_frames, height, width = latent.shape
# Get prompt embeddings
prompt_token_ids = pipe.tokenizer(
prompt,
padding="max_length",
max_length=pipe.transformer.config.max_text_seq_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
prompt_token_ids = prompt_token_ids.input_ids
prompt_embedding = pipe.text_encoder(
prompt_token_ids.to(latent.device)
)[0]
_, seq_len, _ = prompt_embedding.shape
prompt_embedding = prompt_embedding.view(batch_size, seq_len, -1).to(dtype=latent.dtype)
latent = latent.permute(0, 2, 1, 3, 4)
# Add noise to latent (Select)
if noise_step != 0:
noise = torch.randn_like(latent)
add_timesteps = torch.full(
(batch_size,),
fill_value=noise_step,
dtype=torch.long,
device=latent.device,
)
latent = pipe.scheduler.add_noise(latent, noise, add_timesteps)
timesteps = torch.full(
(batch_size,),
fill_value=sr_noise_step,
dtype=torch.long,
device=latent.device,
)
# Prepare rotary embeds
vae_scale_factor_spatial = 2 ** (len(pipe.vae.config.block_out_channels) - 1)
transformer_config = pipe.transformer.config
rotary_emb = (
prepare_rotary_positional_embeddings(
height=height * vae_scale_factor_spatial,
width=width * vae_scale_factor_spatial,
num_frames=num_frames,
transformer_config=transformer_config,
vae_scale_factor_spatial=vae_scale_factor_spatial,
device=latent.device,
)
if pipe.transformer.config.use_rotary_positional_embeddings
else None
)
# Predict noise
predicted_noise = pipe.transformer(
hidden_states=latent,
encoder_hidden_states=prompt_embedding,
timestep=timesteps,
image_rotary_emb=rotary_emb,
return_dict=False,
)[0]
latent_generate = pipe.scheduler.get_velocity(
predicted_noise, latent, timesteps
)
# generate video
if patch_size_t is not None and ncopy > 0:
latent_generate = latent_generate[:, ncopy:, :, :, :]
# [B, C, F, H, W]
video_generate = pipe.decode_latents(latent_generate)
video_generate = (video_generate * 0.5 + 0.5).clamp(0.0, 1.0)
return video_generate
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="VSR using DOVE")
parser.add_argument("--input_dir", type=str)
parser.add_argument("--input_json", type=str, default=None)
parser.add_argument("--gt_dir", type=str, default=None)
parser.add_argument("--eval_metrics", type=str, default='') # 'psnr,ssim,lpips,dists,clipiqa,musiq,maniqa,niqe'
parser.add_argument("--model_path", type=str)
parser.add_argument("--lora_path", type=str, default=None, help="The path of the LoRA weights to be used")
parser.add_argument("--output_path", type=str, default="./results", help="The path save generated video")
parser.add_argument("--fps", type=int, default=24, help="The frames per second for the generated video")
parser.add_argument("--dtype", type=str, default="bfloat16", help="The data type for computation")
parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
parser.add_argument("--upscale_mode", type=str, default="bilinear")
parser.add_argument("--upscale", type=int, default=4)
parser.add_argument("--noise_step", type=int, default=0)
parser.add_argument("--sr_noise_step", type=int, default=399)
parser.add_argument("--is_cpu_offload", action="store_true", help="Enable CPU offload for the model")
parser.add_argument("--is_vae_st", action="store_true", help="Enable VAE slicing and tiling")
parser.add_argument("--png_save", action="store_true", help="Save output as PNG sequence")
parser.add_argument("--save_format", type=str, default="yuv444p", help="Save output as PNG sequence")
# Crop and Tiling Parameters
parser.add_argument("--tile_size_hw", type=int, nargs=2, default=(0, 0), help="Tile size for spatial tiling (height, width)")
parser.add_argument("--overlap_hw", type=int, nargs=2, default=(32, 32))
parser.add_argument("--chunk_len", type=int, default=0, help="Chunk length for temporal chunking")
parser.add_argument("--overlap_t", type=int, default=8)
args = parser.parse_args()
if args.dtype == "float16":
dtype = torch.float16
elif args.dtype == "bfloat16":
dtype = torch.bfloat16
elif args.dtype == "float32":
dtype = torch.float32
else:
raise ValueError("Invalid dtype. Choose from 'float16', 'bfloat16', or 'float32'.")
if args.chunk_len > 0:
print(f"Chunking video into {args.chunk_len} frames with {args.overlap_t} overlap")
overlap_t = args.overlap_t
else:
overlap_t = 0
if args.tile_size_hw != (0, 0):
print(f"Tiling video into {args.tile_size_hw} frames with {args.overlap_hw} overlap")
overlap_hw = args.overlap_hw
else:
overlap_hw = (0, 0)
# Set seed
set_seed(args.seed)
if args.input_json is not None:
with open(args.input_json, 'r') as f:
video_prompt_dict = json.load(f)
else:
video_prompt_dict = {}
# Get all video files from input directory
video_files = []
for ext in video_exts:
video_files.extend(glob.glob(os.path.join(args.input_dir, f'*{ext}')))
video_files = sorted(video_files) # Sort files for consistent ordering
if not video_files:
raise ValueError(f"No video files found in {args.input_dir}")
os.makedirs(args.output_path, exist_ok=True)
# 1. Load the pre-trained CogVideoX pipeline with the specified precision (bfloat16).
# add device_map="balanced" in the from_pretrained function and remove the enable_model_cpu_offload()
# function to use Multi GPUs.
pipe = CogVideoXPipeline.from_pretrained(args.model_path, torch_dtype=dtype, device_map="balanced")
# If you're using with lora, add this code
if args.lora_path:
print(f"Loading LoRA weights from {args.lora_path}")
pipe.load_lora_weights(
args.lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1"
)
pipe.fuse_lora(components=["transformer"], lora_scale=1.0) # lora_scale = lora_alpha / rank
# 2. Set Scheduler.
# Can be changed to `CogVideoXDPMScheduler` or `CogVideoXDDIMScheduler`.
# We recommend using `CogVideoXDDIMScheduler` for CogVideoX-2B.
# using `CogVideoXDPMScheduler` for CogVideoX-5B / CogVideoX-5B-I2V.
# pipe.scheduler = CogVideoXDDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.scheduler = CogVideoXDPMScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing"
)
# 3. Enable CPU offload for the model.
# turn off if you have multiple GPUs or enough GPU memory(such as H100) and it will cost less time in inference
# and enable to("cuda")
# if args.is_cpu_offload:
# pipe.enable_model_cpu_offload()
# pipe.enable_sequential_cpu_offload()
# else:
# pipe.to("cuda")
if args.is_vae_st:
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
# pipe.transformer.eval()
# torch.set_grad_enabled(False)
# 4. Set the metircs
if args.eval_metrics != '':
metrics_list = [m.strip().lower() for m in args.eval_metrics.split(',')]
metrics_models = {}
for name in metrics_list:
try:
metrics_models[name] = pyiqa.create_metric(name).to(pipe.device).eval()
except Exception as e:
print(f"Failed to initialize metric '{name}': {e}")
metric_accumulator = {name: [] for name in metrics_list}
else:
metrics_models = None
metric_accumulator = None
for video_path in tqdm(video_files, desc="Processing videos"):
video_name = os.path.basename(video_path)
prompt = video_prompt_dict.get(video_name, "")
if os.path.exists(video_path):
# Read video
# [F, C, H, W]
video, pad_f, pad_h, pad_w, original_shape = preprocess_video_match(video_path, is_match=True)
H_, W_ = video.shape[2], video.shape[3]
video = torch.nn.functional.interpolate(video, size=(H_*args.upscale, W_*args.upscale), mode=args.upscale_mode, align_corners=False)
__frame_transform = transforms.Compose(
[transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)] # -1, 1
)
video = torch.stack([__frame_transform(f) for f in video], dim=0)
video = video.unsqueeze(0)
# [B, C, F, H, W]
video = video.permute(0, 2, 1, 3, 4).contiguous()
_B, _C, _F, _H, _W = video.shape
time_chunks = make_temporal_chunks(_F, args.chunk_len, overlap_t)
spatial_tiles = make_spatial_tiles(_H, _W, args.tile_size_hw, overlap_hw)
output_video = torch.zeros_like(video)
write_count = torch.zeros_like(video, dtype=torch.int)
print(f"Process video: {video_name} | Prompt: {prompt} | Frame: {_F} (ori: {original_shape[0]}; pad: {pad_f}) | Target Resolution: {_H}, {_W} (ori: {original_shape[1]*args.upscale}, {original_shape[2]*args.upscale}; pad: {pad_h}, {pad_w}) | Chunk Num: {len(time_chunks)*len(spatial_tiles)}")
for t_start, t_end in time_chunks:
for h_start, h_end, w_start, w_end in spatial_tiles:
video_chunk = video[:, :, t_start:t_end, h_start:h_end, w_start:w_end]
# print(f"video_chunk: {video_chunk.shape} | t: {t_start}:{t_end} | h: {h_start}:{h_end} | w: {w_start}:{w_end}")
# [B, C, F, H, W]
_video_generate = process_video(
pipe=pipe,
video=video_chunk,
prompt=prompt,
noise_step=args.noise_step,
sr_noise_step=args.sr_noise_step,
)
region = get_valid_tile_region(
t_start, t_end, h_start, h_end, w_start, w_end,
video_shape=video.shape,
overlap_t=overlap_t,
overlap_h=overlap_hw[0],
overlap_w=overlap_hw[1],
)
output_video[:, :, region["out_t_start"]:region["out_t_end"],
region["out_h_start"]:region["out_h_end"],
region["out_w_start"]:region["out_w_end"]] = \
_video_generate[:, :, region["valid_t_start"]:region["valid_t_end"],
region["valid_h_start"]:region["valid_h_end"],
region["valid_w_start"]:region["valid_w_end"]]
write_count[:, :, region["out_t_start"]:region["out_t_end"],
region["out_h_start"]:region["out_h_end"],
region["out_w_start"]:region["out_w_end"]] += 1
video_generate = output_video
if (write_count == 0).any():
print("Error: Lack of write in region !!!")
exit()
if (write_count > 1).any():
print("Error: Write count > 1 in region !!!")
exit()
video_generate = remove_padding_and_extra_frames(video_generate, pad_f, pad_h*4, pad_w*4)
file_name = os.path.basename(video_path)
output_path = os.path.join(args.output_path, file_name)
if metrics_models is not None:
# [1, C, F, H, W] -> [F, C, H, W]
pred_frames = video_generate[0]
pred_frames = pred_frames.permute(1, 0, 2, 3).contiguous()
if args.gt_dir is not None:
gt_frames = load_sequence(os.path.join(args.gt_dir, file_name))
else:
gt_frames = None
compute_metrics(pred_frames, gt_frames, metrics_models, metric_accumulator, file_name)
if args.png_save:
# Save as PNG sequence
output_dir = output_path.rsplit('.', 1)[0] # Remove extension
save_frames_as_png(video_generate, output_dir, fps=args.fps)
else:
output_path = output_path.replace('.mkv', '.mp4')
save_video_with_imageio(video_generate, output_path, fps=args.fps, format=args.save_format)
else:
print(f"Warning: {video_name} not found in {args.input_dir}")
if metrics_models is not None:
print("\n=== Overall Average Metrics ===")
count = len(next(iter(metric_accumulator.values())))
overall_avg = {metric: 0 for metric in metrics_list}
out_name = 'metrics_'
for metric in metrics_list:
out_name += f"{metric}_"
scores = metric_accumulator[metric]
if scores:
avg = sum(scores) / len(scores)
overall_avg[metric] = avg
print(f"{metric.upper()}: {avg:.4f}")
out_name = out_name.rstrip('_') + '.json'
out_path = os.path.join(args.output_path, out_name)
output = {
"per_sample": metric_accumulator,
"average": overall_avg,
"count": count
}
with open(out_path, 'w') as f:
json.dump(output, f, indent=2)
print("All videos processed.") |