import torch from diffusers import AutoencoderKLWan, WanPipeline, UniPCMultistepScheduler from diffusers.utils import export_to_video import gradio as gr import tempfile import spaces from huggingface_hub import hf_hub_download import numpy as np import random import os from huggingface_hub import snapshot_download snapshot_download(repo_id="APRIL-AIGC/UltraWan", repo_type="model", local_dir="ultrawan_weights/UltraWan", resume_download=True) import subprocess import os import uuid import subprocess def upscale_to_4k(input_video_path, output_video_path): # Use Lanczos for better quality upscale cmd = [ "ffmpeg", "-i", input_video_path, "-vf", "scale=3840:2160:flags=lanczos", # upscale to 4K (3840x2160) "-c:v", "libx264", # or libx265 for smaller size "-crf", "18", # quality: lower is better (range 0-51) "-preset", "slow", # better compression "-y", # overwrite output file output_video_path, ] subprocess.run(cmd, check=True) # LIGHT WEIGHT 1.3b # MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" # LORA_REPO_ID = "Kijai/WanVideo_comfy" # LORA_FILENAME = "Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors" MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers" LORA_REPO_ID = "Kijai/WanVideo_comfy" LORA_FILENAME = "Lightx2v/lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank256_bf16.safetensors" #LORA_FILENAME = "Pusa/Wan21_PusaV1_LoRA_14B_rank512_bf16.safetensors" # LORA_REPO_ID = "RaphaelLiu/PusaV1" # LORA_FILENAME="pusa_v1.safetensors" #LORA_REPO_ID = "Kijai/WanVideo_comfy" #LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) pipe = WanPipeline.from_pretrained( MODEL_ID, vae=vae, torch_dtype=torch.bfloat16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) pipe.to("cuda") causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95]) pipe.fuse_lora() # MOD_VALUE = 32 # DEFAULT_H_SLIDER_VALUE = 512 # DEFAULT_W_SLIDER_VALUE = 896 # # Environment variable check # IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True" # # Original limits # ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1280 # ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1280 # ORIGINAL_MAX_DURATION = round(81/24, 1) # MAX_FRAMES_MODEL/FIXED_FPS # # Limited space constants # LIMITED_MAX_RESOLUTION = 640 # LIMITED_MAX_DURATION = 2.0 # LIMITED_MAX_STEPS = 4 # # Set limits based on environment variable # if IS_ORIGINAL_SPACE: # SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION # SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION # MAX_DURATION = LIMITED_MAX_DURATION # MAX_STEPS = LIMITED_MAX_STEPS # else: # SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H # SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W # MAX_DURATION = ORIGINAL_MAX_DURATION # MAX_STEPS = 8 # MAX_SEED = np.iinfo(np.int32).max # FIXED_FPS = 24 # FIXED_OUTPUT_FPS = 18 # we downspeed the output video as a temporary "trick" # MIN_FRAMES_MODEL = 8 # MAX_FRAMES_MODEL = 81 #New math to make it High Res MOD_VALUE = 32 # Defaults for higher-res generation DEFAULT_H_SLIDER_VALUE = 768 DEFAULT_W_SLIDER_VALUE = 1344 # 16:9 friendly and divisible by MOD_VALUE # Original Space = Hugging Face space with compute limits IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True" # Conservative limits for low-end environments LIMITED_MAX_RESOLUTION = 640 LIMITED_MAX_DURATION = 2.0 LIMITED_MAX_STEPS = 4 # Generous limits for local or Pro spaces ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1536 ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1536 ORIGINAL_MAX_DURATION = round(81 / 24, 1) # 3.4 seconds ORIGINAL_MAX_STEPS = 8 # Use limited or original (generous) settings if IS_ORIGINAL_SPACE: SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION MAX_DURATION = LIMITED_MAX_DURATION MAX_STEPS = LIMITED_MAX_STEPS else: SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W MAX_DURATION = ORIGINAL_MAX_DURATION MAX_STEPS = ORIGINAL_MAX_STEPS MAX_SEED = np.iinfo(np.int32).max FIXED_FPS = 24 FIXED_OUTPUT_FPS = 18 # reduce final video FPS to save space MIN_FRAMES_MODEL = 8 MAX_FRAMES_MODEL = 81 default_prompt_t2v = "cinematic footage, group of pedestrians dancing in the streets of NYC, high quality breakdance, 4K, tiktok video, intricate details, instagram feel, dynamic camera, smooth dance motion, dimly lit, stylish, beautiful faces, smiling, music video" default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature" import os import tempfile import random import numpy as np import torch import gradio as gr import subprocess import shutil def upscale_to_4k_and_replace(input_video_path): with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled: upscaled_path = tmp_upscaled.name cmd = [ "ffmpeg", "-i", input_video_path, "-vf", "scale=3840:2160:flags=lanczos", "-c:v", "libx264", "-crf", "18", "-preset", "slow", "-y", upscaled_path, ] subprocess.run(cmd, check=True) shutil.move(upscaled_path, input_video_path) def load_model_from_path(model_path: str): """ Loads a diffusion pipeline from a local directory. The model is automatically loaded to CUDA with float16. """ pipe = DiffusionPipeline.from_pretrained( model_path, torch_dtype=torch.float16, variant="fp16" if os.path.exists(os.path.join(model_path, "model.fp16.safetensors")) else None ).to("cuda") pipe.enable_model_cpu_offload() # Optional: for large models return pipe def get_duration(prompt, height, width, negative_prompt, duration_seconds, guidance_scale, steps, seed, randomize_seed, progress): if steps > 4 and duration_seconds > 2: return 90 elif steps > 4 or duration_seconds > 2: return 75 else: return 60 @spaces.GPU(duration=get_duration) def generate_video(prompt, height, width, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=1, steps=4, seed=42, randomize_seed=False, progress=gr.Progress(track_tqdm=True)): if not prompt or prompt.strip() == "": raise gr.Error("Please enter a text prompt. Try to use long and precise descriptions.") current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) # Clamp values in demo mode if IS_ORIGINAL_SPACE: height = min(height, LIMITED_MAX_RESOLUTION) width = min(width, LIMITED_MAX_RESOLUTION) duration_seconds = min(duration_seconds, LIMITED_MAX_DURATION) steps = min(steps, LIMITED_MAX_STEPS) # Ensure dimensions are aligned target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) generator_pipe = pipe num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) with torch.inference_mode(): output_frames_list = generator_pipe( prompt=prompt, negative_prompt=negative_prompt, height=target_h, width=target_w, num_frames=num_frames, guidance_scale=float(guidance_scale), num_inference_steps=int(steps), generator=torch.Generator(device="cuda").manual_seed(current_seed) ).frames[0] # Save video to temporary file with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: video_path = tmpfile.name export_to_video(output_frames_list, video_path, fps=FIXED_OUTPUT_FPS) # Always upscale to 4K upscale_to_4k_and_replace(video_path) return video_path, current_seed with gr.Blocks(css="body { max-width: 100vw; overflow-x: hidden; }") as demo: gr.HTML('') # ... your other components here ... gr.Markdown("# ⚡ InstaVideo") gr.Markdown("This Gradio space is a fork of [wan2-1-fast from multimodalart](https://huggingface.co/spaces/multimodalart/wan2-1-fast), and is powered by the Wan CausVid LoRA [from Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors).") # Add notice for limited spaces if IS_ORIGINAL_SPACE: gr.Markdown("⚠️ **This free public demo limits the resolution to 640px, duration to 2s, and inference steps to 4. For full capabilities please duplicate this space.**") with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...") with gr.Accordion("Advanced Settings", open=False): negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) with gr.Row(): height_input = gr.Slider( minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=min(DEFAULT_H_SLIDER_VALUE, SLIDER_MAX_H), label=f"Output Height (multiple of {MOD_VALUE})" ) width_input = gr.Slider( minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=min(DEFAULT_W_SLIDER_VALUE, SLIDER_MAX_W), label=f"Output Width (multiple of {MOD_VALUE})" ) duration_seconds_input = gr.Slider( minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=MAX_DURATION, step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." ) steps_slider = gr.Slider(minimum=1, maximum=MAX_STEPS, step=1, value=4, label="Inference Steps") guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False) generate_button = gr.Button("Generate Video", variant="primary") with gr.Column(): video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) ui_inputs = [ prompt_input, height_input, width_input, negative_prompt_input, duration_seconds_input, guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox ] generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) # Adjust examples based on space limits example_configs = [ ["a majestic eagle soaring through mountain peaks, cinematic aerial view", 896, 512], ["a serene ocean wave crashing on a sandy beach at sunset", 448, 832], ["a field of flowers swaying in the wind, spring morning light", 512, 896], ] if IS_ORIGINAL_SPACE: # Limit example resolutions for limited spaces example_configs = [ [example[0], min(example[1], LIMITED_MAX_RESOLUTION), min(example[2], LIMITED_MAX_RESOLUTION)] for example in example_configs ] gr.Examples( examples=example_configs, inputs=[prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy" ) if __name__ == "__main__": demo.queue().launch()