File size: 12,992 Bytes
961eee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06bbca2
 
 
 
49930a4
06bbca2
49930a4
 
06bbca2
49930a4
 
 
 
 
 
 
 
06bbca2
49930a4
06bbca2
 
961eee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06bbca2
2b78ef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06bbca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
961eee6
 
 
88c865f
961eee6
 
 
 
 
 
 
 
 
 
2b78ef9
 
 
961eee6
2b78ef9
961eee6
 
 
 
 
2b78ef9
 
 
 
 
 
961eee6
5e623f3
2b78ef9
 
961eee6
5e623f3
961eee6
 
 
 
 
2b78ef9
 
 
 
 
 
 
961eee6
 
 
5e623f3
961eee6
 
2b78ef9
961eee6
49930a4
5e623f3
 
961eee6
 
 
5e623f3
961eee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc97fc
961eee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc97fc
 
961eee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import torch
from diffusers import AutoencoderKLWan, WanPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
import random
import os



from huggingface_hub import snapshot_download

snapshot_download(repo_id="APRIL-AIGC/UltraWan", repo_type="model", local_dir="ultrawan_weights/UltraWan", resume_download=True)



import subprocess
import os
import uuid

import subprocess

def upscale_to_4k(input_video_path, output_video_path):
    # Use Lanczos for better quality upscale
    cmd = [
        "ffmpeg",
        "-i", input_video_path,
        "-vf", "scale=3840:2160:flags=lanczos",  # upscale to 4K (3840x2160)
        "-c:v", "libx264",  # or libx265 for smaller size
        "-crf", "18",  # quality: lower is better (range 0-51)
        "-preset", "slow",  # better compression
        "-y",  # overwrite output file
        output_video_path,
    ]
    subprocess.run(cmd, check=True)




# LIGHT WEIGHT 1.3b
# MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
# LORA_REPO_ID = "Kijai/WanVideo_comfy"
# LORA_FILENAME = "Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors"


MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"




LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Lightx2v/lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank256_bf16.safetensors"
#LORA_FILENAME = "Pusa/Wan21_PusaV1_LoRA_14B_rank512_bf16.safetensors"




# LORA_REPO_ID = "RaphaelLiu/PusaV1"
# LORA_FILENAME="pusa_v1.safetensors"
#LORA_REPO_ID = "Kijai/WanVideo_comfy"
#LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"








vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(
    MODEL_ID, vae=vae, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()

# MOD_VALUE = 32
# DEFAULT_H_SLIDER_VALUE =  512
# DEFAULT_W_SLIDER_VALUE =  896

# # Environment variable check
# IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True"

# # Original limits
# ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1280
# ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1280
# ORIGINAL_MAX_DURATION = round(81/24, 1)  # MAX_FRAMES_MODEL/FIXED_FPS

# # Limited space constants
# LIMITED_MAX_RESOLUTION = 640
# LIMITED_MAX_DURATION = 2.0
# LIMITED_MAX_STEPS = 4

# # Set limits based on environment variable
# if IS_ORIGINAL_SPACE:
#     SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
#     SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
#     MAX_DURATION = LIMITED_MAX_DURATION
#     MAX_STEPS = LIMITED_MAX_STEPS
# else:
#     SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
#     SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
#     MAX_DURATION = ORIGINAL_MAX_DURATION
#     MAX_STEPS = 8

# MAX_SEED = np.iinfo(np.int32).max

# FIXED_FPS = 24
# FIXED_OUTPUT_FPS = 18 # we downspeed the output video as a temporary "trick"
# MIN_FRAMES_MODEL = 8
# MAX_FRAMES_MODEL = 81 


#New math to make it High Res

MOD_VALUE = 32

# Defaults for higher-res generation
DEFAULT_H_SLIDER_VALUE = 768
DEFAULT_W_SLIDER_VALUE = 1344  # 16:9 friendly and divisible by MOD_VALUE

# Original Space = Hugging Face space with compute limits
IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True"

# Conservative limits for low-end environments
LIMITED_MAX_RESOLUTION = 640
LIMITED_MAX_DURATION = 2.0
LIMITED_MAX_STEPS = 4

# Generous limits for local or Pro spaces
ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1536
ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1536
ORIGINAL_MAX_DURATION = round(81 / 24, 1)  # 3.4 seconds
ORIGINAL_MAX_STEPS = 8

# Use limited or original (generous) settings
if IS_ORIGINAL_SPACE:
    SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
    SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
    MAX_DURATION = LIMITED_MAX_DURATION
    MAX_STEPS = LIMITED_MAX_STEPS
else:
    SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
    SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
    MAX_DURATION = ORIGINAL_MAX_DURATION
    MAX_STEPS = ORIGINAL_MAX_STEPS

MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
FIXED_OUTPUT_FPS = 18  # reduce final video FPS to save space
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81


default_prompt_t2v = "cinematic footage, group of pedestrians dancing in the streets of NYC, high quality breakdance, 4K, tiktok video, intricate details, instagram feel, dynamic camera, smooth dance motion, dimly lit, stylish, beautiful faces, smiling, music video"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"


import os
import tempfile
import random
import numpy as np
import torch
import gradio as gr
import subprocess
import shutil

def upscale_to_4k_and_replace(input_video_path):
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled:
        upscaled_path = tmp_upscaled.name

    cmd = [
        "ffmpeg",
        "-i", input_video_path,
        "-vf", "scale=3840:2160:flags=lanczos",
        "-c:v", "libx264",
        "-crf", "18",
        "-preset", "slow",
        "-y",
        upscaled_path,
    ]
    subprocess.run(cmd, check=True)

    shutil.move(upscaled_path, input_video_path)

def load_model_from_path(model_path: str):
    """
    Loads a diffusion pipeline from a local directory.
    The model is automatically loaded to CUDA with float16.
    """
    pipe = DiffusionPipeline.from_pretrained(
        model_path,
        torch_dtype=torch.float16,
        variant="fp16" if os.path.exists(os.path.join(model_path, "model.fp16.safetensors")) else None
    ).to("cuda")
    pipe.enable_model_cpu_offload()  # Optional: for large models
    return pipe

    
def get_duration(prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed,
                   progress):
    if steps > 4 and duration_seconds > 2:
        return 90
    elif steps > 4 or duration_seconds > 2:
        return 75
    else:
        return 60

@spaces.GPU(duration=get_duration)
def generate_video(prompt, height, width, 
                   negative_prompt=default_negative_prompt,
                   duration_seconds=2, guidance_scale=1,
                   steps=4, seed=42, randomize_seed=False,
                   progress=gr.Progress(track_tqdm=True)):

    if not prompt or prompt.strip() == "":
        raise gr.Error("Please enter a text prompt. Try to use long and precise descriptions.")

    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    # Clamp values in demo mode
    if IS_ORIGINAL_SPACE:
        height = min(height, LIMITED_MAX_RESOLUTION)
        width = min(width, LIMITED_MAX_RESOLUTION)
        duration_seconds = min(duration_seconds, LIMITED_MAX_DURATION)
        steps = min(steps, LIMITED_MAX_STEPS)

    # Ensure dimensions are aligned
    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)

    generator_pipe = pipe

    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)

    with torch.inference_mode():
        output_frames_list = generator_pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            height=target_h,
            width=target_w,
            num_frames=num_frames,
            guidance_scale=float(guidance_scale),
            num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    # Save video to temporary file
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name

    export_to_video(output_frames_list, video_path, fps=FIXED_OUTPUT_FPS)

    # Always upscale to 4K
    upscale_to_4k_and_replace(video_path)

    return video_path, current_seed


    
    

with gr.Blocks(css="body { max-width: 100vw; overflow-x: hidden; }") as demo:
    gr.HTML('<meta name="viewport" content="width=device-width, initial-scale=1">')
    # ... your other components here ...
    gr.Markdown("# ⚡ InstaVideo")
    gr.Markdown("This Gradio space is a fork of [wan2-1-fast from multimodalart](https://huggingface.co/spaces/multimodalart/wan2-1-fast), and is powered by the Wan CausVid LoRA [from Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors).")

    # Add notice for limited spaces
    if IS_ORIGINAL_SPACE:
        gr.Markdown("⚠️ **This free public demo limits the resolution to 640px, duration to 2s, and inference steps to 4. For full capabilities please duplicate this space.**")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...")
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
               
                with gr.Row():
                    height_input = gr.Slider(
                        minimum=SLIDER_MIN_H, 
                        maximum=SLIDER_MAX_H, 
                        step=MOD_VALUE, 
                        value=min(DEFAULT_H_SLIDER_VALUE, SLIDER_MAX_H), 
                        label=f"Output Height (multiple of {MOD_VALUE})"
                    )
                    width_input = gr.Slider(
                        minimum=SLIDER_MIN_W, 
                        maximum=SLIDER_MAX_W, 
                        step=MOD_VALUE, 
                        value=min(DEFAULT_W_SLIDER_VALUE, SLIDER_MAX_W), 
                        label=f"Output Width (multiple of {MOD_VALUE})"
                    )
                duration_seconds_input = gr.Slider(
                    minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), 
                    maximum=MAX_DURATION, 
                    step=0.1, 
                    value=2, 
                    label="Duration (seconds)", 
                    info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
                )
                steps_slider = gr.Slider(minimum=1, maximum=MAX_STEPS, step=1, value=4, label="Inference Steps") 
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)

            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
    
    ui_inputs = [
        prompt_input, height_input, width_input,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
       
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    # Adjust examples based on space limits
    example_configs = [
        ["a majestic eagle soaring through mountain peaks, cinematic aerial view", 896, 512],
        ["a serene ocean wave crashing on a sandy beach at sunset", 448, 832],
        ["a field of flowers swaying in the wind, spring morning light", 512, 896],
    ]
    
    if IS_ORIGINAL_SPACE:
        # Limit example resolutions for limited spaces
        example_configs = [
            [example[0], min(example[1], LIMITED_MAX_RESOLUTION), min(example[2], LIMITED_MAX_RESOLUTION)]
            for example in example_configs
        ]
    
    gr.Examples(
        examples=example_configs,
        inputs=[prompt_input, height_input, width_input], 
        outputs=[video_output, seed_input], 
        fn=generate_video, 
        cache_examples="lazy"
    )

if __name__ == "__main__":
    demo.queue().launch()