File size: 13,234 Bytes
5f364b5
90509be
c103ac7
5f364b5
 
c103ac7
5f364b5
f4cf641
8268b44
08832e7
b81bed9
 
 
 
5f364b5
b81bed9
9c45c3e
18fece6
9c45c3e
18fece6
 
 
30fb3f4
 
18fece6
 
 
 
 
 
ad5a6bd
4817981
 
 
 
b81bed9
 
 
 
5f364b5
8268b44
90509be
d63bc95
8249703
8268b44
5f364b5
afdfe21
 
f4cf641
8268b44
1b75f51
f4cf641
aeb9017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c103ac7
 
aeb9017
 
 
08832e7
aeb9017
 
08832e7
aeb9017
08832e7
 
68abbee
08832e7
aeb9017
 
 
 
 
 
 
08832e7
 
 
 
 
68abbee
 
 
 
aeb9017
08832e7
1e531a7
 
8268b44
aeb9017
8268b44
aeb9017
 
8268b44
71a939f
8116465
 
d63bc95
5c774ff
b11d0d2
 
 
1b75f51
 
 
 
 
 
 
 
d63bc95
8116465
 
 
1e531a7
d8ad2ca
d63bc95
8268b44
d63bc95
 
08832e7
d8ad2ca
 
d63bc95
d8ad2ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d63bc95
d8ad2ca
 
 
 
 
 
 
d63bc95
08832e7
 
 
68abbee
08832e7
 
 
 
f4cf641
8268b44
 
1e531a7
8268b44
 
 
12d6cf5
afdfe21
5f364b5
d63bc95
8268b44
 
 
1d3a31b
5f364b5
 
 
71acc60
54b40a7
729b810
 
5f364b5
e0667cc
729b810
 
08832e7
da53069
08832e7
 
68abbee
a090eb8
08832e7
5f364b5
c103ac7
d63bc95
8575388
f4cf641
8268b44
 
 
f4cf641
08832e7
 
 
 
 
 
 
 
 
 
 
 
 
 
a090eb8
 
 
 
 
 
 
 
0dff6dd
8268b44
5f364b5
 
c103ac7
8268b44
 
 
d63bc95
8116465
8268b44
f4cf641
54b40a7
5f364b5
08832e7
 
 
 
 
 
 
68abbee
08832e7
 
 
 
 
 
5f364b5
08832e7
 
 
 
 
5f364b5
 
 
0c3ea7b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import torch
from diffusers import AutoencoderKLWan, WanPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
import random
import os
# LIGHT WEIGHT 1.3b
# MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
# LORA_REPO_ID = "Kijai/WanVideo_comfy"
# LORA_FILENAME = "Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors"


MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"

#MODEL_ID ="FastWan/FastWan_T2V_14B_480p_lora_rank_128_bf16.safetensors"


LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Lightx2v/lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank256_bf16.safetensors"
#LORA_FILENAME = "Pusa/Wan21_PusaV1_LoRA_14B_rank512_bf16.safetensors"




# LORA_REPO_ID = "RaphaelLiu/PusaV1"
# LORA_FILENAME="pusa_v1.safetensors"
#LORA_REPO_ID = "Kijai/WanVideo_comfy"
#LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"








vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(
    MODEL_ID, vae=vae, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()

# MOD_VALUE = 32
# DEFAULT_H_SLIDER_VALUE =  512
# DEFAULT_W_SLIDER_VALUE =  896

# # Environment variable check
# IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True"

# # Original limits
# ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1280
# ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1280
# ORIGINAL_MAX_DURATION = round(81/24, 1)  # MAX_FRAMES_MODEL/FIXED_FPS

# # Limited space constants
# LIMITED_MAX_RESOLUTION = 640
# LIMITED_MAX_DURATION = 2.0
# LIMITED_MAX_STEPS = 4

# # Set limits based on environment variable
# if IS_ORIGINAL_SPACE:
#     SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
#     SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
#     MAX_DURATION = LIMITED_MAX_DURATION
#     MAX_STEPS = LIMITED_MAX_STEPS
# else:
#     SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
#     SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
#     MAX_DURATION = ORIGINAL_MAX_DURATION
#     MAX_STEPS = 8

# MAX_SEED = np.iinfo(np.int32).max

# FIXED_FPS = 24
# FIXED_OUTPUT_FPS = 18 # we downspeed the output video as a temporary "trick"
# MIN_FRAMES_MODEL = 8
# MAX_FRAMES_MODEL = 81 


#New math to make it High Res

MOD_VALUE = 32

# Defaults for higher-res generation
DEFAULT_H_SLIDER_VALUE = 768
DEFAULT_W_SLIDER_VALUE = 1344  # 16:9 friendly and divisible by MOD_VALUE

# Original Space = Hugging Face space with compute limits
IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True"

# Conservative limits for low-end environments
LIMITED_MAX_RESOLUTION = 640
LIMITED_MAX_DURATION = 2.0
LIMITED_MAX_STEPS = 4

# Generous limits for local or Pro spaces
ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1536
ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1536
ORIGINAL_MAX_DURATION = round(81 / 24, 1)  # 3.4 seconds
ORIGINAL_MAX_STEPS = 8

# Use limited or original (generous) settings
if IS_ORIGINAL_SPACE:
    SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
    SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
    MAX_DURATION = LIMITED_MAX_DURATION
    MAX_STEPS = LIMITED_MAX_STEPS
else:
    SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
    SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
    MAX_DURATION = ORIGINAL_MAX_DURATION
    MAX_STEPS = ORIGINAL_MAX_STEPS

MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
FIXED_OUTPUT_FPS = 18  # reduce final video FPS to save space
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81


default_prompt_t2v = "cinematic footage, group of pedestrians dancing in the streets of NYC, high quality breakdance, 4K, tiktok video, intricate details, instagram feel, dynamic camera, smooth dance motion, dimly lit, stylish, beautiful faces, smiling, music video"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"

def get_duration(prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed, 
                   progress):
    if steps > 4 and duration_seconds > 2:
        return 90
    elif steps > 4 or duration_seconds > 2:
        return 75
    else:
        return 60

@spaces.GPU(duration=get_duration)
def generate_video(prompt, height, width, 
                   negative_prompt=default_negative_prompt, duration_seconds = 2,
                   guidance_scale = 1, steps = 4,
                   seed = 42, randomize_seed = False, 
                   progress=gr.Progress(track_tqdm=True)):
    """
    Generate a video from a text prompt using the Wan 2.1 T2V model with CausVid LoRA.
    
    This function takes a text prompt and generates a video based on the provided
    prompt and parameters. It uses the Wan 2.1 1.3B Text-to-Video model with CausVid LoRA
    for fast generation in 3-8 steps.
    
    Args:
        prompt (str): Text prompt describing the desired video content.
        height (int): Target height for the output video. Will be adjusted to multiple of MOD_VALUE (32).
        width (int): Target width for the output video. Will be adjusted to multiple of MOD_VALUE (32).
        negative_prompt (str, optional): Negative prompt to avoid unwanted elements. 
            Defaults to default_negative_prompt (contains unwanted visual artifacts).
        duration_seconds (float, optional): Duration of the generated video in seconds.
            Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
        guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
            Defaults to 1.0. Range: 0.0-20.0.
        steps (int, optional): Number of inference steps. More steps = higher quality but slower.
            Defaults to 4. Range: 1-30.
        seed (int, optional): Random seed for reproducible results. Defaults to 42.
            Range: 0 to MAX_SEED (2147483647).
        randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
            Defaults to False.
        progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
    
    Returns:
        tuple: A tuple containing:
            - video_path (str): Path to the generated video file (.mp4)
            - current_seed (int): The seed used for generation (useful when randomize_seed=True)
    
    Raises:
        gr.Error: If prompt is empty or None.
    
    Note:
        - Frame count is calculated as duration_seconds * FIXED_FPS (24)
        - Output dimensions are adjusted to be multiples of MOD_VALUE (32)
        - The function uses GPU acceleration via the @spaces.GPU decorator
        - Generation time varies based on steps and duration (see get_duration function)
    """
    if not prompt or prompt.strip() == "":
        raise gr.Error("Please enter a text prompt. Try to use long and precise descriptions.")

    # Apply limits based on environment variable
    if IS_ORIGINAL_SPACE:
        height = min(height, LIMITED_MAX_RESOLUTION)
        width = min(width, LIMITED_MAX_RESOLUTION)
        duration_seconds = min(duration_seconds, LIMITED_MAX_DURATION)
        steps = min(steps, LIMITED_MAX_STEPS)

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    with torch.inference_mode():
        output_frames_list = pipe(
            prompt=prompt, negative_prompt=negative_prompt,
            height=target_h, width=target_w, num_frames=num_frames,
            guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_OUTPUT_FPS)
    return video_path, current_seed
    
    

with gr.Blocks(css="body { max-width: 100vw; overflow-x: hidden; }") as demo:
    gr.HTML('<meta name="viewport" content="width=device-width, initial-scale=1">')
    # ... your other components here ...
    gr.Markdown("# ⚡ InstaVideo")
    gr.Markdown("This Gradio space is a fork of [wan2-1-fast from multimodalart](https://huggingface.co/spaces/multimodalart/wan2-1-fast), and is powered by the Wan CausVid LoRA [from Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors).")

    # Add notice for limited spaces
    if IS_ORIGINAL_SPACE:
        gr.Markdown("⚠️ **This free public demo limits the resolution to 640px, duration to 2s, and inference steps to 4. For full capabilities please duplicate this space.**")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...")
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                with gr.Row():
                    height_input = gr.Slider(
                        minimum=SLIDER_MIN_H, 
                        maximum=SLIDER_MAX_H, 
                        step=MOD_VALUE, 
                        value=min(DEFAULT_H_SLIDER_VALUE, SLIDER_MAX_H), 
                        label=f"Output Height (multiple of {MOD_VALUE})"
                    )
                    width_input = gr.Slider(
                        minimum=SLIDER_MIN_W, 
                        maximum=SLIDER_MAX_W, 
                        step=MOD_VALUE, 
                        value=min(DEFAULT_W_SLIDER_VALUE, SLIDER_MAX_W), 
                        label=f"Output Width (multiple of {MOD_VALUE})"
                    )
                duration_seconds_input = gr.Slider(
                    minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), 
                    maximum=MAX_DURATION, 
                    step=0.1, 
                    value=2, 
                    label="Duration (seconds)", 
                    info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
                )
                steps_slider = gr.Slider(minimum=1, maximum=MAX_STEPS, step=1, value=4, label="Inference Steps") 
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)

            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
    
    ui_inputs = [
        prompt_input, height_input, width_input,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    # Adjust examples based on space limits
    example_configs = [
        ["a majestic eagle soaring through mountain peaks, cinematic aerial view", 896, 512],
        ["a serene ocean wave crashing on a sandy beach at sunset", 448, 832],
        ["a field of flowers swaying in the wind, spring morning light", 512, 896],
    ]
    
    if IS_ORIGINAL_SPACE:
        # Limit example resolutions for limited spaces
        example_configs = [
            [example[0], min(example[1], LIMITED_MAX_RESOLUTION), min(example[2], LIMITED_MAX_RESOLUTION)]
            for example in example_configs
        ]
    
    gr.Examples(
        examples=example_configs,
        inputs=[prompt_input, height_input, width_input], 
        outputs=[video_output, seed_input], 
        fn=generate_video, 
        cache_examples="lazy"
    )

if __name__ == "__main__":
    demo.queue().launch()