Spaces:
Sleeping
Sleeping
Create dataset_previews.py
Browse files- dataset_previews.py +120 -0
dataset_previews.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
from typing import Dict, Any
|
5 |
+
|
6 |
+
def calculate_evaluation_time(num_questions: int, input_tokens: int, generated_tokens_per_question: int = 300):
|
7 |
+
"""Calculate approximate evaluation time based on token counts and throughput assumptions"""
|
8 |
+
# Constants
|
9 |
+
PROMPT_THROUGHPUT = 5000 # tokens per second
|
10 |
+
GENERATION_THROUGHPUT = 500 # tokens per second
|
11 |
+
OVERHEAD_MINUTES = 2 # Fixed overhead for model loading, etc.
|
12 |
+
|
13 |
+
# Calculate total generated tokens
|
14 |
+
total_generated_tokens = num_questions * generated_tokens_per_question
|
15 |
+
|
16 |
+
# Calculate time components (in seconds)
|
17 |
+
prompt_time = input_tokens / PROMPT_THROUGHPUT
|
18 |
+
generation_time = total_generated_tokens / GENERATION_THROUGHPUT
|
19 |
+
|
20 |
+
# Total time in minutes
|
21 |
+
total_time_minutes = (prompt_time + generation_time) / 60 + OVERHEAD_MINUTES
|
22 |
+
|
23 |
+
return total_time_minutes
|
24 |
+
|
25 |
+
def mmlupro_dataset_preview() -> Dict[str, Any]:
|
26 |
+
"""
|
27 |
+
Generate or retrieve the MMLU-Pro dataset preview information.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
Dict[str, Any]: Dictionary containing dataset information
|
31 |
+
"""
|
32 |
+
preview_file = "mmlu_pro_dataset_preview_table.json"
|
33 |
+
|
34 |
+
# Check if preview file exists
|
35 |
+
if os.path.exists(preview_file):
|
36 |
+
try:
|
37 |
+
# Read existing preview file
|
38 |
+
with open(preview_file, 'r') as f:
|
39 |
+
preview_data = json.load(f)
|
40 |
+
return format_preview_for_display(preview_data)
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error reading preview file: {e}")
|
43 |
+
# If file exists but can't be read, regenerate it
|
44 |
+
|
45 |
+
# Generate preview data if file doesn't exist or couldn't be read
|
46 |
+
num_questions = 12032
|
47 |
+
input_tokens = 12642105
|
48 |
+
generated_tokens_per_question = 300
|
49 |
+
|
50 |
+
# Calculate evaluation time
|
51 |
+
eval_time_minutes = calculate_evaluation_time(
|
52 |
+
num_questions,
|
53 |
+
input_tokens,
|
54 |
+
generated_tokens_per_question
|
55 |
+
)
|
56 |
+
|
57 |
+
# Create preview data
|
58 |
+
preview_data = {
|
59 |
+
"dataset_name": "MMLU-Pro",
|
60 |
+
"evaluation_type": "Multiple Choice",
|
61 |
+
"description": "MMLU-Pro is a refined version of the MMLU dataset, which has been a standard for multiple-choice knowledge assessment. Recent research identified issues with the original MMLU, such as noisy data (some unanswerable questions) and decreasing difficulty due to advances in model capabilities and increased data contamination. MMLU-Pro addresses these issues by presenting models with 10 choices instead of 4, requiring reasoning on more questions, and undergoing expert review to reduce noise. As a result, MMLU-Pro is of higher quality and currently more challenging than the original. A higher score is a better score.",
|
62 |
+
"links": {
|
63 |
+
"huggingface": "https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro",
|
64 |
+
"github": "https://github.com/TIGER-AI-Lab/MMLU-Pro",
|
65 |
+
"paper": "https://arxiv.org/abs/2406.01574"
|
66 |
+
},
|
67 |
+
"organization": "Questions are organized into 14 subjects. Each subject has 5 validation questions (for a total of 70). The 5 validation questions serve as 5-shot prompts for each evaluation question.",
|
68 |
+
"num_questions": num_questions,
|
69 |
+
"input_tokens": input_tokens,
|
70 |
+
"evaluation_time": {
|
71 |
+
"generated_tokens_per_question": generated_tokens_per_question,
|
72 |
+
"total_generated_tokens": num_questions * generated_tokens_per_question,
|
73 |
+
"prompt_throughput": 5000,
|
74 |
+
"generation_throughput": 500,
|
75 |
+
"total_time_minutes": round(eval_time_minutes, 2)
|
76 |
+
}
|
77 |
+
}
|
78 |
+
|
79 |
+
# Save preview data to file
|
80 |
+
try:
|
81 |
+
with open(preview_file, 'w') as f:
|
82 |
+
json.dump(preview_data, f, indent=2)
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Error writing preview file: {e}")
|
85 |
+
|
86 |
+
return format_preview_for_display(preview_data)
|
87 |
+
|
88 |
+
def format_preview_for_display(preview_data: Dict[str, Any]) -> pd.DataFrame:
|
89 |
+
"""
|
90 |
+
Format the preview data into a DataFrame for display in Gradio
|
91 |
+
|
92 |
+
Args:
|
93 |
+
preview_data (Dict[str, Any]): Dataset preview information
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
pd.DataFrame: Formatted data for display
|
97 |
+
"""
|
98 |
+
# Create a table format with keys and values
|
99 |
+
rows = [
|
100 |
+
{"Key": "Dataset Name", "Value": preview_data["dataset_name"]},
|
101 |
+
{"Key": "Evaluation Type", "Value": preview_data["evaluation_type"]},
|
102 |
+
{"Key": "Description", "Value": preview_data["description"]},
|
103 |
+
{"Key": "Links", "Value": (
|
104 |
+
f"Hugging Face: {preview_data['links']['huggingface']}\n"
|
105 |
+
f"GitHub: {preview_data['links']['github']}\n"
|
106 |
+
f"Paper: {preview_data['links']['paper']}"
|
107 |
+
)},
|
108 |
+
{"Key": "Organization", "Value": preview_data["organization"]},
|
109 |
+
{"Key": "Number of Questions", "Value": preview_data["num_questions"]},
|
110 |
+
{"Key": "Number of Input Tokens", "Value": preview_data["input_tokens"]},
|
111 |
+
{"Key": "Estimated Evaluation Time", "Value": f"{preview_data['evaluation_time']['total_time_minutes']} minutes (for 2 models on A100)"}
|
112 |
+
]
|
113 |
+
|
114 |
+
return pd.DataFrame(rows)
|
115 |
+
|
116 |
+
# Example usage (for testing)
|
117 |
+
if __name__ == "__main__":
|
118 |
+
preview_data = mmlupro_dataset_preview()
|
119 |
+
df = format_preview_for_display(preview_data)
|
120 |
+
print(df)
|