Spaces:
Sleeping
Sleeping
Create toy-dataset-eval.py
Browse filesA simple file to verify that evals are working properly.
- toy-dataset-eval.py +153 -0
toy-dataset-eval.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import evaluate
|
3 |
+
import re
|
4 |
+
import base64
|
5 |
+
import io
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
import spaces # Assuming this is a custom or predefined library for GPU handling
|
9 |
+
|
10 |
+
# ---------------------------------------------------------------------------
|
11 |
+
# 1. Simple Test Dataset to Run GPU Calls On
|
12 |
+
# ---------------------------------------------------------------------------
|
13 |
+
test_data = [
|
14 |
+
{"question": "What is 2+2?", "answer": "4"},
|
15 |
+
{"question": "What is 3*3?", "answer": "9"},
|
16 |
+
{"question": "What is 10/2?", "answer": "5"},
|
17 |
+
]
|
18 |
+
|
19 |
+
# ---------------------------------------------------------------------------
|
20 |
+
# 2. Load metric
|
21 |
+
# ---------------------------------------------------------------------------
|
22 |
+
accuracy_metric = evaluate.load("accuracy")
|
23 |
+
|
24 |
+
# ---------------------------------------------------------------------------
|
25 |
+
# 4. Inference helper functions
|
26 |
+
# ---------------------------------------------------------------------------
|
27 |
+
@spaces.GPU
|
28 |
+
def generate_answer(question):
|
29 |
+
"""
|
30 |
+
Generates an answer using Mistral's instruction format.
|
31 |
+
"""
|
32 |
+
model, tokenizer = load_model()
|
33 |
+
|
34 |
+
# Mistral instruction format
|
35 |
+
prompt = f"""<s>[INST] {question}. Provide only the numerical answer. [/INST]"""
|
36 |
+
|
37 |
+
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model.generate(
|
40 |
+
**inputs,
|
41 |
+
max_new_tokens=50,
|
42 |
+
pad_token_id=tokenizer.pad_token_id,
|
43 |
+
eos_token_id=tokenizer.eos_token_id
|
44 |
+
)
|
45 |
+
text_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
+
# Remove the original question from the output
|
47 |
+
return text_output.replace(question, "").strip()
|
48 |
+
|
49 |
+
def parse_answer(model_output):
|
50 |
+
"""
|
51 |
+
Extract numeric answer from model's text output.
|
52 |
+
"""
|
53 |
+
# Look for numbers (including decimals)
|
54 |
+
match = re.search(r"(-?\d*\.?\d+)", model_output)
|
55 |
+
if match:
|
56 |
+
return match.group(1)
|
57 |
+
return model_output.strip()
|
58 |
+
|
59 |
+
|
60 |
+
@spaces.GPU(duration=120) # Allow up to 2 minutes for full evaluation
|
61 |
+
def run_evaluation():
|
62 |
+
predictions = []
|
63 |
+
references = []
|
64 |
+
raw_outputs = [] # Store full model outputs for display
|
65 |
+
|
66 |
+
for sample in test_data:
|
67 |
+
question = sample["question"]
|
68 |
+
reference_answer = sample["answer"]
|
69 |
+
|
70 |
+
# Model inference
|
71 |
+
model_output = generate_answer(question)
|
72 |
+
predicted_answer = parse_answer(model_output)
|
73 |
+
|
74 |
+
predictions.append(predicted_answer)
|
75 |
+
references.append(reference_answer)
|
76 |
+
raw_outputs.append({
|
77 |
+
"question": question,
|
78 |
+
"model_output": model_output,
|
79 |
+
"parsed_answer": predicted_answer,
|
80 |
+
"reference": reference_answer
|
81 |
+
})
|
82 |
+
|
83 |
+
# Normalize answers
|
84 |
+
def normalize_answer(ans):
|
85 |
+
return str(ans).lower().strip()
|
86 |
+
|
87 |
+
norm_preds = [normalize_answer(p) for p in predictions]
|
88 |
+
norm_refs = [normalize_answer(r) for r in references]
|
89 |
+
|
90 |
+
# Compute accuracy
|
91 |
+
results = accuracy_metric.compute(predictions=norm_preds, references=norm_refs)
|
92 |
+
accuracy = results["accuracy"]
|
93 |
+
|
94 |
+
# Create visualization
|
95 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
96 |
+
correct_count = sum(p == r for p, r in zip(norm_preds, norm_refs))
|
97 |
+
incorrect_count = len(test_data) - correct_count
|
98 |
+
|
99 |
+
bars = ax.bar(["Correct", "Incorrect"],
|
100 |
+
[correct_count, incorrect_count],
|
101 |
+
color=["#2ecc71", "#e74c3c"])
|
102 |
+
|
103 |
+
# Add value labels on bars
|
104 |
+
for bar in bars:
|
105 |
+
height = bar.get_height()
|
106 |
+
ax.text(bar.get_x() + bar.get_width()/2., height,
|
107 |
+
f'{int(height)}',
|
108 |
+
ha='center', va='bottom')
|
109 |
+
|
110 |
+
ax.set_title("Evaluation Results")
|
111 |
+
ax.set_ylabel("Count")
|
112 |
+
ax.set_ylim([0, len(test_data) + 0.5])
|
113 |
+
|
114 |
+
# Convert plot to base64
|
115 |
+
buf = io.BytesIO()
|
116 |
+
plt.savefig(buf, format="png", bbox_inches='tight', dpi=300)
|
117 |
+
buf.seek(0)
|
118 |
+
plt.close(fig)
|
119 |
+
data = base64.b64encode(buf.read()).decode("utf-8")
|
120 |
+
|
121 |
+
# Create detailed results HTML
|
122 |
+
details_html = """
|
123 |
+
<div style="margin-top: 20px;">
|
124 |
+
<h3>Detailed Results:</h3>
|
125 |
+
<table style="width:100%; border-collapse: collapse;">
|
126 |
+
<tr style="background-color: #f5f5f5;">
|
127 |
+
<th style="padding: 8px; border: 1px solid #ddd;">Question</th>
|
128 |
+
<th style="padding: 8px; border: 1px solid #ddd;">Model Output</th>
|
129 |
+
<th style="padding: 8px; border: 1px solid #ddd;">Parsed Answer</th>
|
130 |
+
<th style="padding: 8px; border: 1px solid #ddd;">Reference</th>
|
131 |
+
</tr>
|
132 |
+
"""
|
133 |
+
|
134 |
+
for result in raw_outputs:
|
135 |
+
details_html += f"""
|
136 |
+
<tr>
|
137 |
+
<td style="padding: 8px; border: 1px solid #ddd;">{result['question']}</td>
|
138 |
+
<td style="padding: 8px; border: 1px solid #ddd;">{result['model_output']}</td>
|
139 |
+
<td style="padding: 8px; border: 1px solid #ddd;">{result['parsed_answer']}</td>
|
140 |
+
<td style="padding: 8px; border: 1px solid #ddd;">{result['reference']}</td>
|
141 |
+
</tr>
|
142 |
+
"""
|
143 |
+
|
144 |
+
details_html += "</table></div>"
|
145 |
+
|
146 |
+
full_html = f"""
|
147 |
+
<div>
|
148 |
+
<img src="data:image/png;base64,{data}" style="width:100%; max-width:600px;">
|
149 |
+
{details_html}
|
150 |
+
</div>
|
151 |
+
"""
|
152 |
+
|
153 |
+
return f"Accuracy: {accuracy:.2f}", full_html
|