Spaces:
Sleeping
Sleeping
Delete toy_dataset_eval.py
Browse files- toy_dataset_eval.py +0 -151
toy_dataset_eval.py
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import evaluate
|
3 |
-
import re
|
4 |
-
import base64
|
5 |
-
import io
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
-
import spaces # Assuming this is a custom or predefined library for GPU handling
|
9 |
-
|
10 |
-
# ---------------------------------------------------------------------------
|
11 |
-
# 1. Simple Test Dataset to Run GPU Calls On
|
12 |
-
# ---------------------------------------------------------------------------
|
13 |
-
test_data = [
|
14 |
-
{"question": "What is 2+2?", "answer": "4"},
|
15 |
-
{"question": "What is 3*3?", "answer": "9"},
|
16 |
-
{"question": "What is 10/2?", "answer": "5"},
|
17 |
-
]
|
18 |
-
|
19 |
-
# ---------------------------------------------------------------------------
|
20 |
-
# 2. Load metric
|
21 |
-
# ---------------------------------------------------------------------------
|
22 |
-
accuracy_metric = evaluate.load("accuracy")
|
23 |
-
|
24 |
-
# ---------------------------------------------------------------------------
|
25 |
-
# 4. Inference helper functions
|
26 |
-
# ---------------------------------------------------------------------------
|
27 |
-
@spaces.GPU
|
28 |
-
def generate_answer(question, model, tokenizer):
|
29 |
-
"""
|
30 |
-
Generates an answer using Mistral's instruction format.
|
31 |
-
"""
|
32 |
-
# Mistral instruction format
|
33 |
-
prompt = f"""<s>[INST] {question}. Provide only the numerical answer. [/INST]"""
|
34 |
-
|
35 |
-
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
|
36 |
-
with torch.no_grad():
|
37 |
-
outputs = model.generate(
|
38 |
-
**inputs,
|
39 |
-
max_new_tokens=50,
|
40 |
-
pad_token_id=tokenizer.pad_token_id,
|
41 |
-
eos_token_id=tokenizer.eos_token_id
|
42 |
-
)
|
43 |
-
text_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
44 |
-
# Remove the original question from the output
|
45 |
-
return text_output.replace(question, "").strip()
|
46 |
-
|
47 |
-
def parse_answer(model_output):
|
48 |
-
"""
|
49 |
-
Extract numeric answer from model's text output.
|
50 |
-
"""
|
51 |
-
# Look for numbers (including decimals)
|
52 |
-
match = re.search(r"(-?\d*\.?\d+)", model_output)
|
53 |
-
if match:
|
54 |
-
return match.group(1)
|
55 |
-
return model_output.strip()
|
56 |
-
|
57 |
-
|
58 |
-
@spaces.GPU(duration=120) # Allow up to 2 minutes for full evaluation
|
59 |
-
def evaluate_toy_dataset(model, tokenizer):
|
60 |
-
predictions = []
|
61 |
-
references = []
|
62 |
-
raw_outputs = [] # Store full model outputs for display
|
63 |
-
|
64 |
-
for sample in test_data:
|
65 |
-
question = sample["question"]
|
66 |
-
reference_answer = sample["answer"]
|
67 |
-
|
68 |
-
# Model inference
|
69 |
-
model_output = generate_answer(question, model, tokenizer)
|
70 |
-
predicted_answer = parse_answer(model_output)
|
71 |
-
|
72 |
-
predictions.append(predicted_answer)
|
73 |
-
references.append(reference_answer)
|
74 |
-
raw_outputs.append({
|
75 |
-
"question": question,
|
76 |
-
"model_output": model_output,
|
77 |
-
"parsed_answer": predicted_answer,
|
78 |
-
"reference": reference_answer
|
79 |
-
})
|
80 |
-
|
81 |
-
# Normalize answers
|
82 |
-
def normalize_answer(ans):
|
83 |
-
return str(ans).lower().strip()
|
84 |
-
|
85 |
-
norm_preds = [normalize_answer(p) for p in predictions]
|
86 |
-
norm_refs = [normalize_answer(r) for r in references]
|
87 |
-
|
88 |
-
# Compute accuracy
|
89 |
-
results = accuracy_metric.compute(predictions=norm_preds, references=norm_refs)
|
90 |
-
accuracy = results["accuracy"]
|
91 |
-
|
92 |
-
# Create visualization
|
93 |
-
fig, ax = plt.subplots(figsize=(8, 6))
|
94 |
-
correct_count = sum(p == r for p, r in zip(norm_preds, norm_refs))
|
95 |
-
incorrect_count = len(test_data) - correct_count
|
96 |
-
|
97 |
-
bars = ax.bar(["Correct", "Incorrect"],
|
98 |
-
[correct_count, incorrect_count],
|
99 |
-
color=["#2ecc71", "#e74c3c"])
|
100 |
-
|
101 |
-
# Add value labels on bars
|
102 |
-
for bar in bars:
|
103 |
-
height = bar.get_height()
|
104 |
-
ax.text(bar.get_x() + bar.get_width()/2., height,
|
105 |
-
f'{int(height)}',
|
106 |
-
ha='center', va='bottom')
|
107 |
-
|
108 |
-
ax.set_title("Evaluation Results")
|
109 |
-
ax.set_ylabel("Count")
|
110 |
-
ax.set_ylim([0, len(test_data) + 0.5])
|
111 |
-
|
112 |
-
# Convert plot to base64
|
113 |
-
buf = io.BytesIO()
|
114 |
-
plt.savefig(buf, format="png", bbox_inches='tight', dpi=300)
|
115 |
-
buf.seek(0)
|
116 |
-
plt.close(fig)
|
117 |
-
data = base64.b64encode(buf.read()).decode("utf-8")
|
118 |
-
|
119 |
-
# Create detailed results HTML
|
120 |
-
details_html = """
|
121 |
-
<div style="margin-top: 20px;">
|
122 |
-
<h3>Detailed Results:</h3>
|
123 |
-
<table style="width:100%; border-collapse: collapse;">
|
124 |
-
<tr style="background-color: #f5f5f5;">
|
125 |
-
<th style="padding: 8px; border: 1px solid #ddd;">Question</th>
|
126 |
-
<th style="padding: 8px; border: 1px solid #ddd;">Model Output</th>
|
127 |
-
<th style="padding: 8px; border: 1px solid #ddd;">Parsed Answer</th>
|
128 |
-
<th style="padding: 8px; border: 1px solid #ddd;">Reference</th>
|
129 |
-
</tr>
|
130 |
-
"""
|
131 |
-
|
132 |
-
for result in raw_outputs:
|
133 |
-
details_html += f"""
|
134 |
-
<tr>
|
135 |
-
<td style="padding: 8px; border: 1px solid #ddd;">{result['question']}</td>
|
136 |
-
<td style="padding: 8px; border: 1px solid #ddd;">{result['model_output']}</td>
|
137 |
-
<td style="padding: 8px; border: 1px solid #ddd;">{result['parsed_answer']}</td>
|
138 |
-
<td style="padding: 8px; border: 1px solid #ddd;">{result['reference']}</td>
|
139 |
-
</tr>
|
140 |
-
"""
|
141 |
-
|
142 |
-
details_html += "</table></div>"
|
143 |
-
|
144 |
-
full_html = f"""
|
145 |
-
<div>
|
146 |
-
<img src="data:image/png;base64,{data}" style="width:100%; max-width:600px;">
|
147 |
-
{details_html}
|
148 |
-
</div>
|
149 |
-
"""
|
150 |
-
|
151 |
-
return f"Accuracy: {accuracy:.2f}", full_html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|