Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,13 +15,23 @@ from transformers import AutoTokenizer, AutoModel
|
|
15 |
hf_token = os.getenv("HF_TOKEN_READ_WRITE") # Read the token from Secrets
|
16 |
login(hf_token)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# ---------------------------------------------------------------------------
|
19 |
# 1. Define model name and load model/tokenizer
|
20 |
# ---------------------------------------------------------------------------
|
21 |
model_name = "mistralai/Mistral-7B-Instruct-v0.3" # fictional placeholder
|
22 |
|
23 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# ---------------------------------------------------------------------------
|
27 |
# 2. Define a tiny "dataset" for demonstration
|
|
|
15 |
hf_token = os.getenv("HF_TOKEN_READ_WRITE") # Read the token from Secrets
|
16 |
login(hf_token)
|
17 |
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
print("✅ GPU is available")
|
20 |
+
print("GPU Name:", torch.cuda.get_device_name(0))
|
21 |
+
else:
|
22 |
+
print("❌ No GPU available")
|
23 |
+
|
24 |
# ---------------------------------------------------------------------------
|
25 |
# 1. Define model name and load model/tokenizer
|
26 |
# ---------------------------------------------------------------------------
|
27 |
model_name = "mistralai/Mistral-7B-Instruct-v0.3" # fictional placeholder
|
28 |
|
29 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token, torch_dtype=torch.float16, device_map="auto").to(device)
|
32 |
+
|
33 |
+
print(f"✅ Model loaded on {device}")
|
34 |
+
#model = AutoModelForCausalLM.from_pretrained(model_name)
|
35 |
|
36 |
# ---------------------------------------------------------------------------
|
37 |
# 2. Define a tiny "dataset" for demonstration
|