rohansampath's picture
Update app.py
7aad8f7 verified
raw
history blame
7.19 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import evaluate
import re
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import io
import base64
import os
from huggingface_hub import login
import spaces
# Read token and login
hf_token = os.getenv("HF_TOKEN_READ_WRITE")
if hf_token:
login(hf_token)
else:
print("⚠️ No HF_TOKEN_READ_WRITE found in environment")
# ---------------------------------------------------------------------------
# 1. Model and tokenizer setup
# ---------------------------------------------------------------------------
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
tokenizer = None
model = None
@spaces.GPU
def load_model():
global tokenizer, model
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
if model is None:
model = AutoModelForCausalLM.from_pretrained(
model_name,
token=hf_token,
torch_dtype=torch.float16
)
model.to('cuda')
return model, tokenizer
# ---------------------------------------------------------------------------
# 2. Test dataset
# ---------------------------------------------------------------------------
test_data = [
{"question": "What is 2+2?", "answer": "4"},
{"question": "What is 3*3?", "answer": "9"},
{"question": "What is 10/2?", "answer": "5"},
]
# ---------------------------------------------------------------------------
# 3. Load metric
# ---------------------------------------------------------------------------
accuracy_metric = evaluate.load("accuracy")
# ---------------------------------------------------------------------------
# 4. Inference helper functions
# ---------------------------------------------------------------------------
@spaces.GPU
def generate_answer(question):
"""
Generates an answer using Mistral's instruction format.
"""
model, tokenizer = load_model()
# Mistral instruction format
prompt = f"""<s>[INST] {question}. Provide only the numerical answer. [/INST]"""
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=50,
temperature=0.0, # deterministic
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
text_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove the original question from the output
return text_output.replace(question, "").strip()
def parse_answer(model_output):
"""
Extract numeric answer from model's text output.
"""
# Look for numbers (including decimals)
match = re.search(r"(-?\d*\.?\d+)", model_output)
if match:
return match.group(1)
return model_output.strip()
# ---------------------------------------------------------------------------
# 5. Evaluation routine
# ---------------------------------------------------------------------------
@spaces.GPU(duration=120) # Allow up to 2 minutes for full evaluation
def run_evaluation():
predictions = []
references = []
raw_outputs = [] # Store full model outputs for display
for sample in test_data:
question = sample["question"]
reference_answer = sample["answer"]
# Model inference
model_output = generate_answer(question)
predicted_answer = parse_answer(model_output)
predictions.append(predicted_answer)
references.append(reference_answer)
raw_outputs.append({
"question": question,
"model_output": model_output,
"parsed_answer": predicted_answer,
"reference": reference_answer
})
# Normalize answers
def normalize_answer(ans):
return str(ans).lower().strip()
norm_preds = [normalize_answer(p) for p in predictions]
norm_refs = [normalize_answer(r) for r in references]
# Compute accuracy
results = accuracy_metric.compute(predictions=norm_preds, references=norm_refs)
accuracy = results["accuracy"]
# Create visualization
fig, ax = plt.subplots(figsize=(8, 6))
correct_count = sum(p == r for p, r in zip(norm_preds, norm_refs))
incorrect_count = len(test_data) - correct_count
bars = ax.bar(["Correct", "Incorrect"],
[correct_count, incorrect_count],
color=["#2ecc71", "#e74c3c"])
# Add value labels on bars
for bar in bars:
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height,
f'{int(height)}',
ha='center', va='bottom')
ax.set_title("Evaluation Results")
ax.set_ylabel("Count")
ax.set_ylim([0, len(test_data) + 0.5])
# Convert plot to base64
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches='tight', dpi=300)
buf.seek(0)
plt.close(fig)
data = base64.b64encode(buf.read()).decode("utf-8")
# Create detailed results HTML
details_html = """
<div style="margin-top: 20px;">
<h3>Detailed Results:</h3>
<table style="width:100%; border-collapse: collapse;">
<tr style="background-color: #f5f5f5;">
<th style="padding: 8px; border: 1px solid #ddd;">Question</th>
<th style="padding: 8px; border: 1px solid #ddd;">Model Output</th>
<th style="padding: 8px; border: 1px solid #ddd;">Parsed Answer</th>
<th style="padding: 8px; border: 1px solid #ddd;">Reference</th>
</tr>
"""
for result in raw_outputs:
details_html += f"""
<tr>
<td style="padding: 8px; border: 1px solid #ddd;">{result['question']}</td>
<td style="padding: 8px; border: 1px solid #ddd;">{result['model_output']}</td>
<td style="padding: 8px; border: 1px solid #ddd;">{result['parsed_answer']}</td>
<td style="padding: 8px; border: 1px solid #ddd;">{result['reference']}</td>
</tr>
"""
details_html += "</table></div>"
full_html = f"""
<div>
<img src="data:image/png;base64,{data}" style="width:100%; max-width:600px;">
{details_html}
</div>
"""
return f"Accuracy: {accuracy:.2f}", full_html
# ---------------------------------------------------------------------------
# 6. Gradio Interface
# ---------------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Mistral-7B Math Evaluation Demo")
gr.Markdown("""
This demo evaluates Mistral-7B on basic math problems.
Press the button below to run the evaluation.
""")
eval_button = gr.Button("Run Evaluation", variant="primary")
output_text = gr.Textbox(label="Results")
output_plot = gr.HTML(label="Visualization and Details")
eval_button.click(
fn=run_evaluation,
inputs=None,
outputs=[output_text, output_plot]
)
demo.launch()