rohansampath's picture
Update app.py
bb6fa7e verified
raw
history blame
6.76 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
from huggingface_hub import login
from toy_dataset_eval import evaluate_toy_dataset
from mmlu_eval_original import evaluate_mmlu
import spaces
import pandas as pd
# Read token and login
hf_token = os.getenv("HF_TOKEN_READ_WRITE")
if hf_token:
login(hf_token)
else:
print("⚠️ No HF_TOKEN_READ_WRITE found in environment")
# ---------------------------------------------------------------------------
# 1. Model and tokenizer setup and Loading
# ---------------------------------------------------------------------------
model_name = "mistralai/Mistral-7B-v0.1"
tokenizer = None
model = None
model_loaded = False
@spaces.GPU
def load_model():
"""Loads the Mistral model and tokenizer and updates the load status."""
global tokenizer, model, model_loaded
try:
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
if model is None:
model = AutoModelForCausalLM.from_pretrained(
model_name,
token=hf_token,
torch_dtype=torch.float16
)
model.to('cuda')
model_loaded = True
return "✅ Model Loaded!"
except Exception as e:
model_loaded = False
return f"❌ Model Load Failed: {str(e)}"
# ---------------------------------------------------------------------------
# 2. Toy Evaluation
# ---------------------------------------------------------------------------
@spaces.GPU (duration=120)
def run_toy_evaluation():
"""Runs the toy dataset evaluation."""
if not model_loaded:
load_model()
if not model_loaded:
return "⚠️ Model not loaded. Please load the model first."
results = evaluate_toy_dataset(model, tokenizer)
return results # Ensure load confirmation is shown before results
# ---------------------------------------------------------------------------
# 3. MMLU Evaluation call
# ---------------------------------------------------------------------------
@spaces.GPU(duration=120) # Allow up to 2 minutes for full evaluation
def run_mmlu_evaluation(all_subjects, num_subjects, num_shots, num_examples):
"""
Runs the MMLU evaluation with the specified parameters.
Args:
all_subjects (bool): Whether to evaluate all subjects
num_subjects (int): Number of subjects to evaluate (1-57)
num_shots (int): Number of few-shot examples (0-5)
num_examples (int): Number of examples per subject (1-10 or -1 for all)
"""
if not model_loaded:
load_model()
if not model_loaded:
return "⚠️ Model not loaded. Please load the model first."
# Convert num_subjects to -1 if all_subjects is True
if all_subjects:
num_subjects = -1
# Run evaluation
results = evaluate_mmlu(
model,
tokenizer,
num_subjects=num_subjects,
num_questions=num_examples,
num_shots=num_shots
)
# Format results
overall_acc = results["overall_accuracy"]
min_subject, min_acc = results["min_accuracy_subject"]
max_subject, max_acc = results["max_accuracy_subject"]
# Create DataFrame from results table
results_df = pd.DataFrame(results["full_accuracy_table"])
# Format the report
report = (
f"### Overall Results\n"
f"* Overall Accuracy: {overall_acc:.3f}\n"
f"* Best Performance: {max_subject} ({max_acc:.3f})\n"
f"* Worst Performance: {min_subject} ({min_acc:.3f})\n\n"
f"### Detailed Results Table\n"
f"{results_df.to_markdown()}\n"
)
return report
# ---------------------------------------------------------------------------
# 4. Gradio Interface
# ---------------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Mistral-7B on MMLU - Evaluation Demo")
gr.Markdown("""
This demo evaluates Mistral-7B on the MMLU Dataset.
""")
# Load Model Section
with gr.Row():
load_button = gr.Button("Load Model", variant="primary")
load_status = gr.Textbox(label="Model Status", interactive=False)
# Toy Dataset Evaluation Section
gr.Markdown("### Toy Dataset Evaluation")
with gr.Row():
eval_toy_button = gr.Button("Run Toy Evaluation", variant="primary")
toy_output = gr.Textbox(label="Results")
toy_plot = gr.HTML(label="Visualization and Details")
# MMLU Evaluation Section
gr.Markdown("### MMLU Evaluation")
with gr.Row():
all_subjects_checkbox = gr.Checkbox(
label="Evaluate All Subjects",
value=True,
info="When checked, evaluates all 57 MMLU subjects"
)
num_subjects_slider = gr.Slider(
minimum=1,
maximum=57,
value=57,
step=1,
label="Number of Subjects",
info="Number of subjects to evaluate (1-57). They will be loaded in alphabetical order.",
interactive=True
)
with gr.Row():
num_shots_slider = gr.Slider(
minimum=0,
maximum=5,
value=5,
step=1,
label="Number of Few-shot Examples",
info="Number of examples to use for few-shot learning (0-5). They will be loaded in alphabetical order."
)
num_examples_slider = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Examples per Subject",
info="Number of test examples per subject (1-10). They will be loaded in alphabetical order."
)
with gr.Row():
eval_mmlu_button = gr.Button("Run MMLU Evaluation", variant="primary")
results_output = gr.Markdown(label="Evaluation Results")
# Connect components
load_button.click(fn=load_model, inputs=None, outputs=load_status)
# Connect toy evaluation
eval_toy_button.click(
fn=run_toy_evaluation,
inputs=None,
outputs=[toy_output, toy_plot]
)
# Update num_subjects_slider interactivity based on all_subjects checkbox
all_subjects_checkbox.change(
fn=lambda x: gr.update(interactive=not x),
inputs=[all_subjects_checkbox],
outputs=[num_subjects_slider]
)
# Connect MMLU evaluation button
eval_mmlu_button.click(
fn=run_mmlu_evaluation,
inputs=[
all_subjects_checkbox,
num_subjects_slider,
num_shots_slider,
num_examples_slider
],
outputs=results_output
)
demo.launch()