rohansampath's picture
Update app.py
a2d0717 verified
raw
history blame
11.6 kB
import gradio as gr
import os
from huggingface_hub import login
from mmlu_pro_eval_adapted import evaluate_mmlu_pro
import spaces
import pandas as pd
import time
import traceback
# Read token and login
hf_token = os.getenv("HF_READ_WRITE_TOKEN")
if hf_token:
login(hf_token)
else:
print("⚠️ No HF_READ_WRITE_TOKEN found in environment")
# ---------------------------------------------------------------------------
# 1. Model configuration
# ---------------------------------------------------------------------------
model_name = "mistralai/Mistral-7B-v0.1"
# ---------------------------------------------------------------------------
# 2. MMLU-Pro Evaluation
# ---------------------------------------------------------------------------
@spaces.GPU(duration=240)
def run_mmlu_evaluation(all_subjects, num_subjects, num_shots, all_questions, num_questions, progress=gr.Progress()):
"""
Runs the MMLU evaluation with the specified parameters.
Args:
all_subjects (bool): Whether to evaluate all subjects
num_subjects (int): Number of subjects to evaluate (1-14)
num_shots (int): Number of few-shot examples (0-5)
all_questions (bool): Whether to evaluate all questions per subject
num_questions (int): Number of examples per subject (1-40 or all)
progress (gr.Progress): Progress indicator
"""
try:
# Convert parameters if needed
if all_subjects:
num_subjects = -1
if all_questions:
num_questions = -1
# Run evaluation with timing
start_time = time.time()
results = evaluate_mmlu_pro(
model_name,
num_subjects=num_subjects,
num_questions=num_questions,
num_shots=num_shots,
)
elapsed_time = time.time() - start_time
# Format results
overall_acc = results["overall_accuracy"]
min_subject, min_acc = results["min_accuracy_subject"]
max_subject, max_acc = results["max_accuracy_subject"]
# Create DataFrame from results table
results_df = pd.DataFrame(results["full_accuracy_table"])
# Calculate totals for the overall row
total_samples = results_df['Num_samples'].sum()
total_correct = results_df['Num_correct'].sum()
# Create overall row
overall_row = pd.DataFrame({
'Subject': ['**Overall**'],
'Num_samples': [total_samples],
'Num_correct': [total_correct],
'Accuracy': [overall_acc]
})
# Concatenate overall row with results
results_df = pd.concat([overall_row, results_df], ignore_index=True)
# Format the report
report = (
f"### Overall Results\n"
f"* Overall Accuracy: {overall_acc:.3f}\n"
f"* Best Performance: {max_subject} ({max_acc:.3f})\n"
f"* Worst Performance: {min_subject} ({min_acc:.3f})\n"
f"* Evaluation completed in {elapsed_time:.2f} seconds\n"
)
# Return values that re-enable UI components after completion
return (report, results_df,
gr.update(interactive=True), gr.update(visible=False),
gr.update(interactive=True), gr.update(interactive=True),
gr.update(interactive=True), gr.update(interactive=True),
gr.update(interactive=True))
except Exception as e:
# Handle errors gracefully
error_trace = traceback.format_exc()
error_message = f"### Error during evaluation\n```\n{error_trace}\n```"
# Re-enable UI components on error
return (error_message, None,
gr.update(interactive=True), gr.update(visible=False),
gr.update(interactive=True), gr.update(interactive=True),
gr.update(interactive=True), gr.update(interactive=True),
gr.update(interactive=True))
# ---------------------------------------------------------------------------
# 3. Gradio Interface
# ---------------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Mistral-7B on MMLU-Pro Evaluation Demo")
gr.Markdown("""
This demo evaluates [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [MMLU-Pro Dataset](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro).
""")
# MMLU Evaluation Section
gr.Markdown("### MMLU Evaluation")
with gr.Row():
all_subjects_checkbox = gr.Checkbox(
label="Evaluate All Subjects",
value=False,
info="When checked, evaluates all 14 MMLU-Pro subjects"
)
num_subjects_slider = gr.Slider(
minimum=1,
maximum=14,
value=14,
step=1,
label="Number of Subjects",
info="Number of subjects to evaluate (1-14). They will be loaded in alphabetical order.",
interactive=True
)
with gr.Row():
num_shots_slider = gr.Slider(
minimum=0,
maximum=5,
value=5,
step=1,
label="Number of Few-shot Examples",
info="Number of examples to use for few-shot learning (0-5)."
)
with gr.Row():
all_questions_checkbox = gr.Checkbox(
label="Evaluate All Questions",
value=False,
info="When checked, evaluates all available questions for each subject"
)
questions_info_text = gr.Markdown(visible=False, value="**All 12,032 questions across all subjects will be evaluated**")
with gr.Row(elem_id="questions_selection_row"):
questions_container = gr.Column(scale=1, elem_id="questions_slider_container")
with questions_container:
num_questions_slider = gr.Slider(
minimum=1,
maximum=40,
value=20,
step=1,
label="Questions per Subject",
info="Choose a subset of questions (1-40) per subject. They will be loaded in order of question_id.",
interactive=True
)
with gr.Row():
with gr.Column(scale=1):
eval_mmlu_button = gr.Button("Run MMLU-Pro Evaluation", variant="primary", interactive=True)
cancel_mmlu_button = gr.Button("Cancel Evaluation", variant="stop", visible=False)
results_output = gr.Markdown(label="Evaluation Results")
with gr.Row():
results_table = gr.DataFrame(interactive=True, label="Detailed Results (Sortable)", visible=True)
# Track evaluation state - used to prevent multiple evaluations
evaluation_state = gr.State({"running": False})
# Update num_subjects_slider interactivity based on all_subjects checkbox
def update_subjects_slider(checked):
return gr.update(interactive=not checked)
all_subjects_checkbox.change(
fn=update_subjects_slider,
inputs=[all_subjects_checkbox],
outputs=[num_subjects_slider]
)
# Update interface based on all_questions checkbox
def update_questions_interface(checked):
if checked:
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
all_questions_checkbox.change(
fn=update_questions_interface,
inputs=[all_questions_checkbox],
outputs=[questions_container, questions_info_text]
)
# Function to disable UI components during evaluation
def start_evaluation(state):
if state["running"]:
return [
state,
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(visible=False),
"Evaluation already in progress. Please wait.",
None
]
# Update state to running
state["running"] = True
return [
state,
gr.update(interactive=False), # all_subjects_checkbox
gr.update(interactive=False), # num_subjects_slider
gr.update(interactive=False), # num_shots_slider
gr.update(interactive=False), # all_questions_checkbox
gr.update(interactive=False), # num_questions_slider
gr.update(interactive=False), # eval_mmlu_button
gr.update(visible=True), # cancel_mmlu_button
"Starting evaluation...", # results_output
None # results_table
]
# Function to reset UI after evaluation
def finish_evaluation(state):
state["running"] = False
return state
# Function to handle cancel button click
def cancel_evaluation(state):
# Note: This doesn't actually stop the evaluation process
# It only updates the UI state to appear canceled
state["running"] = False
return [
state,
gr.update(interactive=True), # all_subjects_checkbox
gr.update(interactive=True), # num_subjects_slider
gr.update(interactive=True), # num_shots_slider
gr.update(interactive=True), # all_questions_checkbox
gr.update(interactive=True), # num_questions_slider
gr.update(interactive=True), # eval_mmlu_button
gr.update(visible=False), # cancel_mmlu_button
"⚠️ Evaluation canceled by user (note: backend process may continue running)", # results_output
None # results_table
]
# Connect MMLU evaluation button with state tracking
eval_mmlu_button.click(
fn=start_evaluation,
inputs=[evaluation_state],
outputs=[
evaluation_state,
all_subjects_checkbox,
num_subjects_slider,
num_shots_slider,
all_questions_checkbox,
num_questions_slider,
eval_mmlu_button,
cancel_mmlu_button,
results_output,
results_table
]
).then(
fn=run_mmlu_evaluation,
inputs=[
all_subjects_checkbox,
num_subjects_slider,
num_shots_slider,
all_questions_checkbox,
num_questions_slider
],
outputs=[
results_output,
results_table,
eval_mmlu_button,
cancel_mmlu_button,
all_subjects_checkbox,
num_subjects_slider,
num_shots_slider,
all_questions_checkbox,
num_questions_slider
]
).then(
fn=finish_evaluation,
inputs=[evaluation_state],
outputs=[evaluation_state]
)
# Connect cancel button
cancel_mmlu_button.click(
fn=cancel_evaluation,
inputs=[evaluation_state],
outputs=[
evaluation_state,
all_subjects_checkbox,
num_subjects_slider,
num_shots_slider,
all_questions_checkbox,
num_questions_slider,
eval_mmlu_button,
cancel_mmlu_button,
results_output,
results_table
]
)
demo.launch()