Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from huggingface_hub import login | |
from mmlu_pro_eval_adapted import evaluate_mmlu_pro | |
import spaces | |
import pandas as pd | |
import time | |
import traceback | |
# Read token and login | |
hf_token = os.getenv("HF_READ_WRITE_TOKEN") | |
if hf_token: | |
login(hf_token) | |
else: | |
print("⚠️ No HF_READ_WRITE_TOKEN found in environment") | |
# --------------------------------------------------------------------------- | |
# 1. Model configuration | |
# --------------------------------------------------------------------------- | |
model_name = "mistralai/Mistral-7B-v0.1" | |
# --------------------------------------------------------------------------- | |
# 2. MMLU-Pro Evaluation | |
# --------------------------------------------------------------------------- | |
def run_mmlu_evaluation(all_subjects, num_subjects, num_shots, all_questions, num_questions, progress=gr.Progress()): | |
""" | |
Runs the MMLU evaluation with the specified parameters. | |
Args: | |
all_subjects (bool): Whether to evaluate all subjects | |
num_subjects (int): Number of subjects to evaluate (1-14) | |
num_shots (int): Number of few-shot examples (0-5) | |
all_questions (bool): Whether to evaluate all questions per subject | |
num_questions (int): Number of examples per subject (1-40 or all) | |
progress (gr.Progress): Progress indicator | |
""" | |
try: | |
# Convert parameters if needed | |
if all_subjects: | |
num_subjects = -1 | |
if all_questions: | |
num_questions = -1 | |
# Run evaluation with timing | |
start_time = time.time() | |
results = evaluate_mmlu_pro( | |
model_name, | |
num_subjects=num_subjects, | |
num_questions=num_questions, | |
num_shots=num_shots, | |
) | |
elapsed_time = time.time() - start_time | |
# Format results | |
overall_acc = results["overall_accuracy"] | |
min_subject, min_acc = results["min_accuracy_subject"] | |
max_subject, max_acc = results["max_accuracy_subject"] | |
# Create DataFrame from results table | |
results_df = pd.DataFrame(results["full_accuracy_table"]) | |
# Calculate totals for the overall row | |
total_samples = results_df['Num_samples'].sum() | |
total_correct = results_df['Num_correct'].sum() | |
# Create overall row | |
overall_row = pd.DataFrame({ | |
'Subject': ['**Overall**'], | |
'Num_samples': [total_samples], | |
'Num_correct': [total_correct], | |
'Accuracy': [overall_acc] | |
}) | |
# Concatenate overall row with results | |
results_df = pd.concat([overall_row, results_df], ignore_index=True) | |
# Format the report | |
report = ( | |
f"### Overall Results\n" | |
f"* Overall Accuracy: {overall_acc:.3f}\n" | |
f"* Best Performance: {max_subject} ({max_acc:.3f})\n" | |
f"* Worst Performance: {min_subject} ({min_acc:.3f})\n" | |
f"* Evaluation completed in {elapsed_time:.2f} seconds\n" | |
) | |
# Return values that re-enable UI components after completion | |
return (report, results_df, | |
gr.update(interactive=True), gr.update(visible=False), | |
gr.update(interactive=True), gr.update(interactive=True), | |
gr.update(interactive=True), gr.update(interactive=True), | |
gr.update(interactive=True)) | |
except Exception as e: | |
# Handle errors gracefully | |
error_trace = traceback.format_exc() | |
error_message = f"### Error during evaluation\n```\n{error_trace}\n```" | |
# Re-enable UI components on error | |
return (error_message, None, | |
gr.update(interactive=True), gr.update(visible=False), | |
gr.update(interactive=True), gr.update(interactive=True), | |
gr.update(interactive=True), gr.update(interactive=True), | |
gr.update(interactive=True)) | |
# --------------------------------------------------------------------------- | |
# 3. Gradio Interface | |
# --------------------------------------------------------------------------- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Mistral-7B on MMLU-Pro Evaluation Demo") | |
gr.Markdown(""" | |
This demo evaluates [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [MMLU-Pro Dataset](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro). | |
""") | |
# MMLU Evaluation Section | |
gr.Markdown("### MMLU Evaluation") | |
with gr.Row(): | |
all_subjects_checkbox = gr.Checkbox( | |
label="Evaluate All Subjects", | |
value=False, | |
info="When checked, evaluates all 14 MMLU-Pro subjects" | |
) | |
num_subjects_slider = gr.Slider( | |
minimum=1, | |
maximum=14, | |
value=14, | |
step=1, | |
label="Number of Subjects", | |
info="Number of subjects to evaluate (1-14). They will be loaded in alphabetical order.", | |
interactive=True | |
) | |
with gr.Row(): | |
num_shots_slider = gr.Slider( | |
minimum=0, | |
maximum=5, | |
value=5, | |
step=1, | |
label="Number of Few-shot Examples", | |
info="Number of examples to use for few-shot learning (0-5)." | |
) | |
with gr.Row(): | |
all_questions_checkbox = gr.Checkbox( | |
label="Evaluate All Questions", | |
value=False, | |
info="When checked, evaluates all available questions for each subject" | |
) | |
questions_info_text = gr.Markdown(visible=False, value="**All 12,032 questions across all subjects will be evaluated**") | |
with gr.Row(elem_id="questions_selection_row"): | |
questions_container = gr.Column(scale=1, elem_id="questions_slider_container") | |
with questions_container: | |
num_questions_slider = gr.Slider( | |
minimum=1, | |
maximum=40, | |
value=20, | |
step=1, | |
label="Questions per Subject", | |
info="Choose a subset of questions (1-40) per subject. They will be loaded in order of question_id.", | |
interactive=True | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
eval_mmlu_button = gr.Button("Run MMLU-Pro Evaluation", variant="primary", interactive=True) | |
cancel_mmlu_button = gr.Button("Cancel Evaluation", variant="stop", visible=False) | |
results_output = gr.Markdown(label="Evaluation Results") | |
with gr.Row(): | |
results_table = gr.DataFrame(interactive=True, label="Detailed Results (Sortable)", visible=True) | |
# Track evaluation state - used to prevent multiple evaluations | |
evaluation_state = gr.State({"running": False}) | |
# Update num_subjects_slider interactivity based on all_subjects checkbox | |
def update_subjects_slider(checked): | |
return gr.update(interactive=not checked) | |
all_subjects_checkbox.change( | |
fn=update_subjects_slider, | |
inputs=[all_subjects_checkbox], | |
outputs=[num_subjects_slider] | |
) | |
# Update interface based on all_questions checkbox | |
def update_questions_interface(checked): | |
if checked: | |
return gr.update(visible=False), gr.update(visible=True) | |
else: | |
return gr.update(visible=True), gr.update(visible=False) | |
all_questions_checkbox.change( | |
fn=update_questions_interface, | |
inputs=[all_questions_checkbox], | |
outputs=[questions_container, questions_info_text] | |
) | |
# Function to disable UI components during evaluation | |
def start_evaluation(state): | |
if state["running"]: | |
return [ | |
state, | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(visible=False), | |
"Evaluation already in progress. Please wait.", | |
None | |
] | |
# Update state to running | |
state["running"] = True | |
return [ | |
state, | |
gr.update(interactive=False), # all_subjects_checkbox | |
gr.update(interactive=False), # num_subjects_slider | |
gr.update(interactive=False), # num_shots_slider | |
gr.update(interactive=False), # all_questions_checkbox | |
gr.update(interactive=False), # num_questions_slider | |
gr.update(interactive=False), # eval_mmlu_button | |
gr.update(visible=True), # cancel_mmlu_button | |
"Starting evaluation...", # results_output | |
None # results_table | |
] | |
# Function to reset UI after evaluation | |
def finish_evaluation(state): | |
state["running"] = False | |
return state | |
# Function to handle cancel button click | |
def cancel_evaluation(state): | |
# Note: This doesn't actually stop the evaluation process | |
# It only updates the UI state to appear canceled | |
state["running"] = False | |
return [ | |
state, | |
gr.update(interactive=True), # all_subjects_checkbox | |
gr.update(interactive=True), # num_subjects_slider | |
gr.update(interactive=True), # num_shots_slider | |
gr.update(interactive=True), # all_questions_checkbox | |
gr.update(interactive=True), # num_questions_slider | |
gr.update(interactive=True), # eval_mmlu_button | |
gr.update(visible=False), # cancel_mmlu_button | |
"⚠️ Evaluation canceled by user (note: backend process may continue running)", # results_output | |
None # results_table | |
] | |
# Connect MMLU evaluation button with state tracking | |
eval_mmlu_button.click( | |
fn=start_evaluation, | |
inputs=[evaluation_state], | |
outputs=[ | |
evaluation_state, | |
all_subjects_checkbox, | |
num_subjects_slider, | |
num_shots_slider, | |
all_questions_checkbox, | |
num_questions_slider, | |
eval_mmlu_button, | |
cancel_mmlu_button, | |
results_output, | |
results_table | |
] | |
).then( | |
fn=run_mmlu_evaluation, | |
inputs=[ | |
all_subjects_checkbox, | |
num_subjects_slider, | |
num_shots_slider, | |
all_questions_checkbox, | |
num_questions_slider | |
], | |
outputs=[ | |
results_output, | |
results_table, | |
eval_mmlu_button, | |
cancel_mmlu_button, | |
all_subjects_checkbox, | |
num_subjects_slider, | |
num_shots_slider, | |
all_questions_checkbox, | |
num_questions_slider | |
] | |
).then( | |
fn=finish_evaluation, | |
inputs=[evaluation_state], | |
outputs=[evaluation_state] | |
) | |
# Connect cancel button | |
cancel_mmlu_button.click( | |
fn=cancel_evaluation, | |
inputs=[evaluation_state], | |
outputs=[ | |
evaluation_state, | |
all_subjects_checkbox, | |
num_subjects_slider, | |
num_shots_slider, | |
all_questions_checkbox, | |
num_questions_slider, | |
eval_mmlu_button, | |
cancel_mmlu_button, | |
results_output, | |
results_table | |
] | |
) | |
demo.launch() |