File size: 14,947 Bytes
77d4add
 
 
 
b748395
532a4a4
 
3404c97
b748395
 
 
 
77d4add
 
84c9e35
3404c97
b748395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d4add
00afad7
532a4a4
 
 
 
 
 
00afad7
532a4a4
 
84c9e35
 
 
 
 
 
 
 
532a4a4
84c9e35
 
 
 
 
 
 
 
 
532a4a4
 
84c9e35
 
 
 
 
532a4a4
 
 
 
 
 
 
 
 
 
84c9e35
00afad7
 
77d4add
6cf3cc0
3404c97
 
 
 
714de6d
 
5d2ee20
3404c97
714de6d
532a4a4
 
 
 
3404c97
532a4a4
3404c97
 
 
 
 
 
 
 
 
 
 
 
 
 
532a4a4
3404c97
 
 
 
 
5d2ee20
3404c97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532a4a4
 
 
3404c97
532a4a4
3404c97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532a4a4
 
3404c97
 
 
 
 
 
 
 
 
532a4a4
3404c97
 
77d4add
3404c97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d1be3a
 
 
 
 
 
 
3404c97
 
77d4add
3404c97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d1be3a
532a4a4
 
 
 
 
 
 
714de6d
 
 
 
6d1be3a
 
 
 
 
 
 
 
 
532a4a4
77d4add
532a4a4
714de6d
00afad7
3404c97
532a4a4
 
 
 
 
 
3404c97
6d1be3a
 
 
 
 
 
3404c97
 
6d1be3a
 
714de6d
532a4a4
714de6d
 
 
 
 
 
 
6d1be3a
714de6d
 
 
 
 
77d4add
532a4a4
 
 
6d1be3a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import torch
import evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
import numpy as np
import pandas as pd
from tqdm import tqdm

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

accuracy_metric = evaluate.load("accuracy")
option_letters = ["A", "B", "C", "D"]
MAX_CONTEXT_WINDOW = 4096

def load_dataset_from_hf(verbose=False):
    mmlu_dataset = load_dataset("cais/mmlu", "all")
    if verbose:
        for split in mmlu_dataset.keys():
            dataset = mmlu_dataset[split]  # Access the dataset split
            
            # Log number of rows and columns
            num_rows = len(dataset)
            num_cols = len(dataset.column_names)
            
            logger.info(f"Dataset Split: {split}")
            logger.info(f"Number of Rows: {num_rows}")
            logger.info(f"Number of Columns: {num_cols}")
            
            # Log column names and their types
            column_types = {col: str(dataset.features[col].dtype) for col in dataset.column_names}
            logger.info(f"Column Names: {dataset.column_names}")
            logger.info(f"Column Types: {column_types}")
        
            # Log a sample of 5 rows
            sample_rows = dataset.select(range(min(5, num_rows)))  # Ensure we don't exceed available rows
            logger.info("Sample Rows:")
            for row in sample_rows:
                logger.info(row)
        
            logger.info("=" * 50)  # Separator for readability
    return mmlu_dataset


def format_subject(subject):
    l = subject.split("_")
    s = ""
    for entry in l:
        s += " " + entry
    return s


def format_example(df, idx, include_answer=True):
    """
    Format a single example for the prompt based on the actual dataset structure:
    - Column 0: question text
    - Column 1: subject
    - Column 2: choices as a list of strings
    - Column 3: answer as a numeric index (0-3)
    """
    # Get the question text
    prompt = df.iloc[idx, 0]
    
    # Get the choices from the dataframe
    options_list = df.iloc[idx, 2]
    assert(isinstance(options_list, list))
    
    
    for j, option in enumerate(options_list):
        prompt += f"\n{option_letters[j]}. {option}"
    
    prompt += "\nAnswer:"
    if include_answer:
        # Convert numeric answer to letter
        answer_num = df.iloc[idx, 3]
        answer_letter = {0: "A", 1: "B", 2: "C", 3: "D"}[answer_num]
        prompt += f" {answer_letter}\n\n"
    
    return prompt


def gen_prompt(df, subject, k=-1):
    prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
        format_subject(subject)
    )
    if k == -1:
        k = df.shape[0]
    for i in range(k):
        prompt += format_example(df, i, include_answer=True)
    return prompt


@torch.no_grad()
def eval_batched(subject, model, tokenizer, dev_df, test_df, num_questions_per_subject=5, train_shots=5, batch_size=4):
    """
    Improved eval function that uses batched processing on GPU 
    """
    assert all(dev_df['subject'] == subject), f"Not all items in dev_df match subject {subject}"
    assert all(test_df['subject'] == subject), f"Not all items in test_df match subject {subject}"

    logger.info(f"Subject: {subject}, processing with batch_size={batch_size}")
    
    cors = []
    all_probs = []

    if (train_shots < 0):
        train_shots = 0  # Make positive.

    # Generate the few-shot examples for this subject once
    train_prompt = gen_prompt(dev_df, subject, train_shots)
    
    # Process test examples in batches
    for batch_start in range(0, test_df.shape[0], batch_size):
        batch_end = min(batch_start + batch_size, test_df.shape[0])
        batch_size_actual = batch_end - batch_start
        
        # Prepare batch prompts
        batch_prompts = []
        batch_labels = []
        
        for i in range(batch_start, batch_end):
            prompt_end = format_example(test_df, i, include_answer=False)
            prompt = train_prompt + prompt_end
            batch_prompts.append(prompt)
            
            label = test_df.iloc[i, 3]
            label_letter = {0: "A", 1: "B", 2: "C", 3: "D"}[label]
            batch_labels.append(label_letter)
        
        # Tokenize all prompts in batch
        tokenized_inputs = tokenizer(batch_prompts, padding=True, return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(model.device)
        attention_mask = tokenized_inputs.attention_mask.to(model.device)
        
        # Check if any example exceeds context window and adjust if needed
        if input_ids.shape[1] > MAX_CONTEXT_WINDOW:
            logger.warning(f"Some examples exceed max context window ({input_ids.shape[1]} > {MAX_CONTEXT_WINDOW})")
            logger.warning(f"Reducing train_shots from {train_shots}")
            
            # Find the lowest train_shots that fits
            while train_shots > 0:
                train_shots -= 1
                train_prompt = gen_prompt(dev_df, subject, train_shots)
                
                # Recalculate prompts with fewer shots
                temp_prompt = train_prompt + format_example(test_df, batch_start, include_answer=False)
                temp_tokens = tokenizer(temp_prompt, return_tensors="pt").input_ids
                
                if temp_tokens.shape[1] <= MAX_CONTEXT_WINDOW:
                    logger.info(f"Reduced to train_shots={train_shots}")
                    
                    # Regenerate all prompts in the batch with fewer shots
                    batch_prompts = []
                    for i in range(batch_start, batch_end):
                        prompt_end = format_example(test_df, i, include_answer=False)
                        prompt = train_prompt + prompt_end
                        batch_prompts.append(prompt)
                    
                    # Retokenize with reduced shots
                    tokenized_inputs = tokenizer(batch_prompts, padding=True, return_tensors="pt")
                    input_ids = tokenized_inputs.input_ids.to(model.device)
                    attention_mask = tokenized_inputs.attention_mask.to(model.device)
                    break
            
            # If we still can't fit even with 0 shots, we have to skip
            if input_ids.shape[1] > MAX_CONTEXT_WINDOW:
                logger.error(f"Even with 0 shots, context is too long ({input_ids.shape[1]} > {MAX_CONTEXT_WINDOW})")
                # Process individually as fallback
                for i in range(batch_start, batch_end):
                    single_prompt = format_example(test_df, i, include_answer=False)
                    single_tokens = tokenizer(single_prompt, return_tensors="pt").input_ids.to(model.device)
                    if single_tokens.shape[1] <= MAX_CONTEXT_WINDOW:
                        single_output = model(input_ids=single_tokens)
                        single_logits = single_output.logits[0, -1]
                        single_probs = get_option_probs(tokenizer, single_logits)
                        pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(single_probs)]
                        cors.append(pred == batch_labels[i-batch_start])
                        all_probs.append(single_probs)
                    else:
                        logger.error(f"Example {i} is too long even by itself, skipping")
                continue
        
        # Run model on batch
        outputs = model(input_ids=input_ids, attention_mask=attention_mask)
        
        # Extract predictions for each example in batch
        for j in range(batch_size_actual):
            # Get logits for the last token in each sequence
            sequence_len = attention_mask[j].sum()
            logits = outputs.logits[j, sequence_len-1]
            
            # Calculate probabilities for A, B, C, D
            probs = get_option_probs(tokenizer, logits)
            pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]
            
            cor = pred == batch_labels[j]
            
            # Log first example for debugging
            if batch_start == 0 and j == 0:
                logger.info(f"Prompt (truncated): {batch_prompts[j][:200]}...")
                logger.info(f"Label_Letter: {batch_labels[j]}")
                logger.info(f"Probabilities: {probs}")
                logger.info(f"Prediction: {pred}")
                logger.info(f"Correct: {cor}")
            
            cors.append(cor)
            all_probs.append(probs)
    
    acc = np.mean(cors)
    cors = np.array(cors)
    all_probs = np.array(all_probs)
    
    print("Average accuracy {:.3f} - {}".format(acc, subject))
    
    return subject, cors, acc, all_probs


def get_option_probs(tokenizer, logits):
    """Helper function to extract option probabilities from logits"""
    option_probs = torch.nn.functional.softmax(
        torch.tensor(
            [
                logits[tokenizer("A").input_ids[-1]],
                logits[tokenizer("B").input_ids[-1]],
                logits[tokenizer("C").input_ids[-1]],
                logits[tokenizer("D").input_ids[-1]],
            ]
        ).float(),
        dim=0,
    ).detach().cpu().numpy()
    
    return option_probs


def get_max_batch_size(model, tokenizer, example_text, max_memory_fraction=0.8):
    """
    Estimate the maximum possible batch size based on available GPU memory
    
    Args:
        model: The model to evaluate
        tokenizer: The tokenizer to use
        example_text: A sample text input
        max_memory_fraction: Maximum fraction of GPU memory to use (0.8 = 80%)
        
    Returns:
        Estimated maximum batch size
    """
    import torch
    
    # Get total GPU memory and currently allocated memory
    total_memory = torch.cuda.get_device_properties(0).total_memory
    
    # Keep a safe buffer to avoid OOM
    safe_memory = int(total_memory * max_memory_fraction)
    
    # Tokenize example to get size
    example_tokens = tokenizer(example_text, return_tensors="pt").to(model.device)
    example_len = example_tokens.input_ids.shape[1]
    
    # Run a single forward pass to measure memory usage
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    _ = model(**example_tokens)
    single_forward_memory = torch.cuda.max_memory_allocated()
    
    # Calculate memory per example and estimate max batch size
    estimated_max_batch = safe_memory // single_forward_memory
    
    # Reduce by a factor for safety (activations, gradients, etc.)
    safe_batch_size = max(1, int(estimated_max_batch * 0.8))
    
    logger.info(f"Estimated max batch size: {safe_batch_size} for sequence length {example_len}")
    logger.info(f"Memory usage: {single_forward_memory / 1e9:.2f} GB per example")
    logger.info(f"Total memory: {total_memory / 1e9:.2f} GB, Safe memory: {safe_memory / 1e9:.2f} GB")
    
    return safe_batch_size

def evaluate_mmlu_batched(model, tokenizer, num_subjects=10, num_questions=10, num_shots=5, batch_size=8, auto_batch_size=False):
    """
    Evaluates the model on MMLU using batched GPU processing for faster inference.
    
    Args:
        model: The model to evaluate
        tokenizer: The tokenizer to use
        num_subjects (int): Number of subjects to evaluate. If -1, evaluates all subjects
        num_questions (int): Number of questions per subject
        num_shots (int): Number of few-shot examples to use
        batch_size (int): Batch size for processing multiple examples at once
        auto_batch_size (bool): If True, automatically determine the optimal batch size
    """
    
    # If auto_batch_size is enabled, estimate the optimal batch size
    if auto_batch_size:
        # Get a sample prompt
        dataset = load_dataset_from_hf(verbose=False)
        test_df = pd.DataFrame(dataset['test'])
        dev_df = pd.DataFrame(dataset['dev'])
        test_df = test_df.sort_values(['subject', 'question'])
        dev_df = dev_df.sort_values(['subject', 'question'])
        subject = test_df['subject'].iloc[0]
        test_sample = test_df[test_df['subject'] == subject].head(1)
        dev_sample = dev_df[dev_df['subject'] == subject].head(num_shots)
        
        # Generate a sample prompt
        train_prompt = gen_prompt(dev_sample, subject, num_shots)
        sample_prompt = train_prompt + format_example(test_sample, 0, include_answer=False)
        
        # Estimate the max batch size
        batch_size = get_max_batch_size(model, tokenizer, sample_prompt)
        logger.info(f"Auto-adjusted batch size: {batch_size}")

    model.eval()  # Ensure Dropout and BatchNorm behave appropriately for inference
    
    dataset = load_dataset_from_hf(verbose=True)

    # Convert dataset partitions to pandas DataFrames
    test_df = pd.DataFrame(dataset['test'])
    dev_df = pd.DataFrame(dataset['dev'])

    # Sort datasets by subject and other relevant columns
    test_df = test_df.sort_values(['subject', 'question'])
    dev_df = dev_df.sort_values(['subject', 'question'])

    # Get all unique subjects
    all_subjects = sorted(test_df['subject'].unique())
    
    # Select subjects based on num_subjects parameter
    if num_subjects == -1 or num_subjects >= len(all_subjects):
        subjects = all_subjects
    else:
        # Take the first num_subjects subjects
        subjects = all_subjects[:num_subjects]

    results = {}
    all_cors = []
    results_table = []
    
    for subject in tqdm(subjects, desc="Processing subjects"):
        test_samples = test_df[test_df['subject'] == subject].head(num_questions)
        dev_samples = dev_df[dev_df['subject'] == subject].head(num_shots)

        # Log subject and sample counts
        logger.info(f"Subject: {subject}, Test Samples: {len(test_samples)}, Dev Samples: {len(dev_samples)}")

        subject, cors, acc, probs = eval_batched(
            subject, 
            model, 
            tokenizer, 
            dev_samples, 
            test_samples, 
            num_questions_per_subject=num_questions, 
            train_shots=num_shots,
            batch_size=batch_size
        )
        
        results[subject] = acc
        all_cors.append(cors)
        
        results_table.append({
            'Subject': subject,
            'Num_samples': len(test_samples),
            'Num_correct': int(np.sum(cors)), 
            'Accuracy': acc
        })
    
    weighted_acc = np.mean(np.concatenate(all_cors))
    
    min_acc_subject = min(results.items(), key=lambda x: x[1])[0]
    max_acc_subject = max(results.items(), key=lambda x: x[1])[0]
    
    return {
        "overall_accuracy": weighted_acc,
        "min_accuracy_subject": (min_acc_subject, results[min_acc_subject]),
        "max_accuracy_subject": (max_acc_subject, results[max_acc_subject]),
        "full_accuracy_table": results_table,
    }