Spaces:
Sleeping
Sleeping
File size: 13,714 Bytes
c5224d3 3195f7f 4c36941 8e8ba80 95f85dc 3f6f5f7 3d567ab 671bd95 4c36941 e8d7a5b c5224d3 3195f7f a7f824f 3195f7f bb6fa7e 614dffd a7f824f 3195f7f 614dffd a7f824f 671bd95 a7f824f cc13a5e a7f824f 671bd95 a7f824f 3195f7f a7f824f 3195f7f 671bd95 a7f824f 3195f7f a7f824f 614dffd 671bd95 a7f824f 671bd95 3195f7f a7f824f 3195f7f 614dffd 33231b0 ee60006 df31ae3 ed9a008 33231b0 ee60006 e2aa1de df31ae3 1642f78 9190bb9 df31ae3 ed9a008 df31ae3 671bd95 7c638d0 df31ae3 ed9a008 95f85dc 8e40c72 95f85dc df31ae3 671bd95 9190bb9 df31ae3 671bd95 df31ae3 ee60006 df31ae3 671bd95 ee60006 33231b0 1642f78 df31ae3 3195f7f a7f824f 3195f7f df31ae3 e8d7a5b df31ae3 e8d7a5b a7f824f df31ae3 a7f824f df31ae3 a7f824f df31ae3 ee60006 df31ae3 ed9a008 df31ae3 ed9a008 df31ae3 3d567ab df31ae3 ed9a008 df31ae3 3d567ab df31ae3 ed9a008 33231b0 ed9a008 df31ae3 ed9a008 df31ae3 ed9a008 33231b0 ed9a008 df31ae3 33231b0 df31ae3 33231b0 df31ae3 ed9a008 df31ae3 ed9a008 df31ae3 33231b0 ed9a008 33231b0 ed9a008 33231b0 ed9a008 33231b0 ed9a008 33231b0 ed9a008 33231b0 df31ae3 33231b0 df31ae3 ed9a008 df31ae3 33231b0 1642f78 33231b0 1642f78 33231b0 df31ae3 ee60006 33231b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
from huggingface_hub import login
from toy_dataset_eval import evaluate_toy_dataset
from mmlu_eval_original import evaluate_mmlu_batched
import spaces
import pandas as pd
import time # Added for timing functionality
# Read token and login
hf_token = os.getenv("HF_TOKEN_READ_WRITE")
if hf_token:
login(hf_token)
else:
print("⚠️ No HF_TOKEN_READ_WRITE found in environment")
# ---------------------------------------------------------------------------
# 1. Model and tokenizer setup and Loading
# ---------------------------------------------------------------------------
model_name = "mistralai/Mistral-7B-v0.1"
tokenizer = None
model = None
model_loaded = False
@spaces.GPU
def load_model():
"""Loads the Mistral model and tokenizer and updates the load status."""
global tokenizer, model, model_loaded
start_time = time.time() # Start timing
try:
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
if model is None:
model = AutoModelForCausalLM.from_pretrained(
model_name,
token=hf_token,
torch_dtype=torch.float16
)
model.to('cuda')
model_loaded = True
elapsed_time = time.time() - start_time # Calculate elapsed time
return f"✅ Model Loaded in {elapsed_time:.2f} seconds!"
except Exception as e:
model_loaded = False
return f"❌ Model Load Failed: {str(e)}"
# ---------------------------------------------------------------------------
# 2. Toy Evaluation
# ---------------------------------------------------------------------------
@spaces.GPU(duration=120)
def run_toy_evaluation():
"""Runs the toy dataset evaluation."""
if not model_loaded:
load_model()
if not model_loaded:
return "⚠️ Model not loaded. Please load the model first."
start_time = time.time() # Start timing
results = evaluate_toy_dataset(model, tokenizer)
elapsed_time = time.time() - start_time # Calculate elapsed time
return f"{results}\n\nEvaluation completed in {elapsed_time:.2f} seconds.", \
f"<div>Time taken: {elapsed_time:.2f} seconds</div>" # Return timing info
# ---------------------------------------------------------------------------
# 3. MMLU Evaluation call
# ---------------------------------------------------------------------------
@spaces.GPU(duration=120) # Allow up to 2 minutes for full evaluation
def run_mmlu_evaluation(all_subjects, num_subjects, num_shots, all_questions, num_questions, progress=gr.Progress()):
"""
Runs the MMLU evaluation with the specified parameters.
Args:
all_subjects (bool): Whether to evaluate all subjects
num_subjects (int): Number of subjects to evaluate (1-57)
num_shots (int): Number of few-shot examples (0-5)
all_questions (bool): Whether to evaluate all questions per subject
num_questions (int): Number of examples per subject (1-20 or -1 for all)
progress (gr.Progress): Progress indicator
"""
if not model_loaded:
load_model()
if not model_loaded:
return ("⚠️ Model not loaded. Please load the model first.", None,
gr.update(interactive=True), gr.update(visible=False),
gr.update(interactive=True), gr.update(interactive=True),
gr.update(interactive=True), gr.update(interactive=True),
gr.update(interactive=True))
# Convert num_subjects to -1 if all_subjects is True
if all_subjects:
num_subjects = -1
# Convert num_questions to -1 if all_questions is True
if all_questions:
num_questions = -1
# Run evaluation with timing
start_time = time.time() # Start timing
results = evaluate_mmlu_batched(
model,
tokenizer,
num_subjects=num_subjects,
num_questions=num_questions,
num_shots=num_shots,
batch_size=32,
auto_batch_size=True
)
elapsed_time = time.time() - start_time # Calculate elapsed time
# Format results
overall_acc = results["overall_accuracy"]
min_subject, min_acc = results["min_accuracy_subject"]
max_subject, max_acc = results["max_accuracy_subject"]
# Create DataFrame from results table
results_df = pd.DataFrame(results["full_accuracy_table"])
# Calculate totals for the overall row
total_samples = results_df['Num_samples'].sum()
total_correct = results_df['Num_correct'].sum()
# Create overall row
overall_row = pd.DataFrame({
'Subject': ['**Overall**'],
'Num_samples': [total_samples],
'Num_correct': [total_correct],
'Accuracy': [overall_acc]
})
# Concatenate overall row with results
results_df = pd.concat([overall_row, results_df], ignore_index=True)
# Verify that the overall accuracy is consistent with the total correct/total samples
assert abs(overall_acc - (total_correct / total_samples)) < 1e-6, \
"Overall accuracy calculation mismatch detected"
# Format the report
report = (
f"### Overall Results\n"
f"* Overall Accuracy: {overall_acc:.3f}\n"
f"* Best Performance: {max_subject} ({max_acc:.3f})\n"
f"* Worst Performance: {min_subject} ({min_acc:.3f})\n"
f"* Evaluation completed in {elapsed_time:.2f} seconds\n"
)
# Return values that re-enable UI components after completion
return (report, results_df,
gr.update(interactive=True), gr.update(visible=False),
gr.update(interactive=True), gr.update(interactive=True),
gr.update(interactive=True), gr.update(interactive=True),
gr.update(interactive=True))
# ---------------------------------------------------------------------------
# 4. Gradio Interface
# ---------------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Mistral-7B on MMLU - Evaluation Demo")
gr.Markdown("""
This demo evaluates Mistral-7B on the MMLU Dataset.
""")
# Load Model Section
with gr.Row():
load_button = gr.Button("Load Model", variant="primary")
load_status = gr.Textbox(label="Model Status", interactive=False)
# Toy Dataset Evaluation Section
gr.Markdown("### Toy Dataset Evaluation")
with gr.Row():
eval_toy_button = gr.Button("Run Toy Evaluation", variant="primary")
toy_output = gr.Textbox(label="Results")
toy_plot = gr.HTML(label="Visualization and Details")
# MMLU Evaluation Section
gr.Markdown("### MMLU Evaluation")
with gr.Row():
all_subjects_checkbox = gr.Checkbox(
label="Evaluate All Subjects",
value=False, # Default is unchecked
info="When checked, evaluates all 57 MMLU subjects"
)
num_subjects_slider = gr.Slider(
minimum=1,
maximum=57,
value=10, # Default is 10 subjects
step=1,
label="Number of Subjects",
info="Number of subjects to evaluate (1-57). They will be loaded in alphabetical order.",
interactive=True
)
with gr.Row():
num_shots_slider = gr.Slider(
minimum=0,
maximum=5,
value=5, # Default is 5 few-shot examples
step=1,
label="Number of Few-shot Examples",
info="Number of examples to use for few-shot learning (0-5). They will be loaded in alphabetical order."
)
with gr.Row():
all_questions_checkbox = gr.Checkbox(
label="Evaluate All Questions",
value=False, # Default is unchecked
info="When checked, evaluates all available questions for each subject"
)
questions_info_text = gr.Markdown(visible=False, value="**All 14,042 questions across all subjects will be evaluated**")
with gr.Row(elem_id="questions_selection_row"):
questions_container = gr.Column(scale=1, elem_id="questions_slider_container")
# Move the slider into the container for easier visibility toggling
with questions_container:
num_questions_slider = gr.Slider(
minimum=1,
maximum=20,
value=10, # Default is 10 questions
step=1,
label="Questions per Subject",
info="Choose a subset of questions (1-20)",
interactive=True
)
with gr.Row():
with gr.Column(scale=1):
eval_mmlu_button = gr.Button("Run MMLU Evaluation", variant="primary", interactive=True)
cancel_mmlu_button = gr.Button("Cancel MMLU Evaluation", variant="stop", visible=False)
results_output = gr.Markdown(label="Evaluation Results")
with gr.Row():
results_table = gr.DataFrame(interactive=True, label="Detailed Results (Sortable)", visible=True)
# Connect components
load_button.click(fn=load_model, inputs=None, outputs=load_status)
# Connect toy evaluation
eval_toy_button.click(
fn=run_toy_evaluation,
inputs=None,
outputs=[toy_output, toy_plot]
)
# Update num_subjects_slider interactivity based on all_subjects checkbox
def update_subjects_slider(checked):
if checked:
return gr.update(value=57, interactive=False)
else:
return gr.update(interactive=True)
all_subjects_checkbox.change(
fn=update_subjects_slider,
inputs=[all_subjects_checkbox],
outputs=[num_subjects_slider]
)
# Update interface based on all_questions checkbox
def update_questions_interface(checked):
if checked:
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
all_questions_checkbox.change(
fn=update_questions_interface,
inputs=[all_questions_checkbox],
outputs=[questions_container, questions_info_text]
)
# Function to disable UI components during evaluation
def disable_ui_for_evaluation():
return [
gr.update(interactive=False, info="MMLU Evaluation currently in progress"), # all_subjects_checkbox
gr.update(interactive=False, info="MMLU Evaluation currently in progress"), # num_subjects_slider
gr.update(interactive=False, info="MMLU Evaluation currently in progress"), # num_shots_slider
gr.update(interactive=False, info="MMLU Evaluation currently in progress"), # all_questions_checkbox
gr.update(interactive=False, info="MMLU Evaluation currently in progress"), # num_questions_slider
gr.update(interactive=False), # eval_mmlu_button
gr.update(visible=True) # cancel_mmlu_button
]
# Function to handle cancel button click
def cancel_evaluation():
# This doesn't actually cancel the GPU job (which would require more backend support)
# But it does reset the UI state to be interactive again
return [
gr.update(interactive=True, info="When checked, evaluates all 57 MMLU subjects"), # all_subjects_checkbox
gr.update(interactive=True, info="Number of subjects to evaluate (1-57). They will be loaded in alphabetical order."), # num_subjects_slider
gr.update(interactive=True, info="Number of examples to use for few-shot learning (0-5). They will be loaded in alphabetical order."), # num_shots_slider
gr.update(interactive=True, info="When checked, evaluates all available questions for each subject"), # all_questions_checkbox
gr.update(interactive=True, info="Choose a subset of questions (1-20)"), # num_questions_slider
gr.update(interactive=True), # eval_mmlu_button
gr.update(visible=False), # cancel_mmlu_button
"⚠️ Evaluation canceled by user", # results_output
None # results_table
]
# Connect MMLU evaluation button - now disables UI and shows cancel button
eval_mmlu_button.click(
fn=disable_ui_for_evaluation,
inputs=None,
outputs=[
all_subjects_checkbox,
num_subjects_slider,
num_shots_slider,
all_questions_checkbox,
num_questions_slider,
eval_mmlu_button,
cancel_mmlu_button
]
).then(
fn=run_mmlu_evaluation,
inputs=[
all_subjects_checkbox,
num_subjects_slider,
num_shots_slider,
all_questions_checkbox,
num_questions_slider
],
outputs=[
results_output,
results_table,
eval_mmlu_button,
cancel_mmlu_button,
all_subjects_checkbox,
num_subjects_slider,
num_shots_slider,
all_questions_checkbox,
num_questions_slider
]
)
# Connect cancel button
cancel_mmlu_button.click(
fn=cancel_evaluation,
inputs=None,
outputs=[
all_subjects_checkbox,
num_subjects_slider,
num_shots_slider,
all_questions_checkbox,
num_questions_slider,
eval_mmlu_button,
cancel_mmlu_button,
results_output,
results_table
]
)
demo.launch() |