Spaces:
Sleeping
Sleeping
File size: 8,181 Bytes
77d4add c69128a b748395 532a4a4 b748395 77d4add 84c9e35 532a4a4 b748395 77d4add 00afad7 532a4a4 00afad7 532a4a4 84c9e35 532a4a4 84c9e35 532a4a4 84c9e35 532a4a4 84c9e35 00afad7 77d4add 6cf3cc0 532a4a4 714de6d 5d2ee20 714de6d 532a4a4 5d2ee20 532a4a4 84c9e35 532a4a4 84c9e35 77d0f13 84c9e35 77d0f13 714de6d 532a4a4 77d4add 6d1be3a 77d4add 6d1be3a 532a4a4 714de6d 6d1be3a 532a4a4 77d4add 532a4a4 714de6d 00afad7 532a4a4 6d1be3a 714de6d 532a4a4 714de6d 6d1be3a 714de6d 77d4add 532a4a4 6d1be3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import torch
import evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
import spaces
import logging
import numpy as np
import pandas as pd
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
accuracy_metric = evaluate.load("accuracy")
option_letters = ["A", "B", "C", "D"]
MAX_CONTEXT_WINDOW = 4096 #Hard-coded for the moment, will be replaced later to be an input from the Model.
def load_dataset_from_hf(verbose=False):
mmlu_dataset = load_dataset("cais/mmlu", "all")
if verbose:
for split in mmlu_dataset.keys():
dataset = mmlu_dataset[split] # Access the dataset split
# Log number of rows and columns
num_rows = len(dataset)
num_cols = len(dataset.column_names)
logger.info(f"Dataset Split: {split}")
logger.info(f"Number of Rows: {num_rows}")
logger.info(f"Number of Columns: {num_cols}")
# Log column names and their types
column_types = {col: str(dataset.features[col].dtype) for col in dataset.column_names}
logger.info(f"Column Names: {dataset.column_names}")
logger.info(f"Column Types: {column_types}")
# Log a sample of 5 rows
sample_rows = dataset.select(range(min(5, num_rows))) # Ensure we don't exceed available rows
logger.info("Sample Rows:")
for row in sample_rows:
logger.info(row)
logger.info("=" * 50) # Separator for readability
return mmlu_dataset
def format_subject(subject):
l = subject.split("_")
s = ""
for entry in l:
s += " " + entry
return s
def format_example(df, idx, include_answer=True):
"""
Format a single example for the prompt based on the actual dataset structure:
- Column 0: question text
- Column 1: subject
- Column 2: choices as a list of strings
- Column 3: answer as a numeric index (0-3)
"""
# Get the question text
prompt = df.iloc[idx, 0]
# Get the choices from the dataframe
options_list = df.iloc[idx, 2]
assert(isinstance(options_list, list))
for j, option in enumerate(options_list):
prompt += f"\n{option_letters[j]}. {option}"
prompt += "\nAnswer:"
if include_answer:
# Convert numeric answer to letter
answer_num = df.iloc[idx, 3]
answer_letter = {0: "A", 1: "B", 2: "C", 3: "D"}[answer_num]
prompt += f" {answer_letter}\n\n"
return prompt
def gen_prompt(df, subject, k=-1):
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
format_subject(subject)
)
if k == -1:
k = df.shape[0]
for i in range(k):
prompt += format_example(df, i, include_answer=True)
return prompt
@torch.no_grad()
def eval (subject, model, tokenizer, dev_df, test_df, num_questions_per_subject=5, train_shots=5):
assert all(dev_df['subject'] == subject), f"Not all items in dev_df match subject {subject}"
assert all(test_df['subject'] == subject), f"Not all items in test_df match subject {subject}"
logger.info(f"Subject: {subject}")
cors = []
all_probs = []
if (train_shots < 0):
train_shots = 0 # Make positive.
for i in range(test_df.shape[0]):
prompt_end = format_example(test_df, i, include_answer=False)
train_prompt = gen_prompt(dev_df, subject, train_shots)
prompt = train_prompt + prompt_end
input_ids = tokenizer (prompt, return_tensors="pt").input_ids.to(model.device)
# Reduce number of shots in the prompt to fit in context window.
while (train_shots > 0 and input_ids.shape[-1] > MAX_CONTEXT_WINDOW):
train_shots -= 1
train_prompt = gen_prompt(dev_df, subject, train_shots)
prompt = train_prompt + prompt_end
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(
model.device
)
logger.info (f"Sample: {i}")
label = test_df.iloc[i, 3]
label_letter = {0: "A", 1: "B", 2: "C", 3: "D"}[label]
logits = model(input_ids=input_ids).logits[0, -1]
probs = (
torch.nn.functional.softmax(
torch.tensor(
[
logits[tokenizer("A").input_ids[-1]],
logits[tokenizer("B").input_ids[-1]],
logits[tokenizer("C").input_ids[-1]],
logits[tokenizer("D").input_ids[-1]],
]
).float(),
dim=0,
)
.detach()
.cpu()
.numpy()
)
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]
cor = pred == label_letter
if (i == 0):
logger.info (f"Prompt: {prompt}")
logger.info(f"Label_Letter: {label_letter}")
logger.info(f"Logits: {logits}")
logger.info(f"Probabilities: {probs}")
logger.info(f"Prediction: {pred}")
logger.info(f"Correct: {cor}")
cors.append(cor)
all_probs.append(probs)
acc = np.mean(cors)
cors = np.array(cors)
all_probs = np.array(all_probs)
print("Average accuracy {:.3f} - {}".format(acc, subject))
return cors, acc, all_probs
def evaluate_mmlu(model, tokenizer, num_subjects=-1, num_questions=5, num_shots=5):
"""
Evaluates the model on MMLU across specified number of subjects.
Args:
model: The model to evaluate
tokenizer: The tokenizer to use
num_subjects (int): Number of subjects to evaluate. If -1, evaluates all subjects
num_questions (int): Number of questions per subject
num_shots (int): Number of few-shot examples to use
"""
model.eval() # Ensure Dropout and BatchNorm behave appropriately for inference
dataset = load_dataset_from_hf(verbose=True)
# Convert dataset partitions to pandas DataFrames
test_df = pd.DataFrame(dataset['test'])
dev_df = pd.DataFrame(dataset['dev'])
# Sort datasets by subject and other relevant columns
test_df = test_df.sort_values(['subject', 'question'])
dev_df = dev_df.sort_values(['subject', 'question'])
# Get all unique subjects
all_subjects = sorted(test_df['subject'].unique())
# Select subjects based on num_subjects parameter
if num_subjects == -1 or num_subjects >= len(all_subjects):
subjects = all_subjects
else:
# Take the first num_subjects subjects
subjects = all_subjects[:num_subjects]
results = {}
all_cors = []
results_table = []
for subject in subjects:
test_samples = test_df[test_df['subject'] == subject].head(num_questions)
dev_samples = dev_df[dev_df['subject'] == subject].head(num_shots)
# Log subject and sample counts
logger.info(f"Subject: {subject}, Test Samples: {len(test_samples)}, Dev Samples: {len(dev_samples)}")
cors, acc, probs = eval(
subject,
model,
tokenizer,
dev_samples,
test_samples,
num_questions_per_subject=num_questions,
train_shots=num_shots
)
results[subject] = acc
all_cors.append(cors)
results_table.append({
'Subject': subject,
'Num_samples': len(test_samples),
'Num_correct': int(np.sum(cors)),
'Accuracy': acc
})
weighted_acc = np.mean(np.concatenate(all_cors))
min_acc_subject = min(results.items(), key=lambda x: x[1])[0]
max_acc_subject = max(results.items(), key=lambda x: x[1])[0]
return {
"overall_accuracy": weighted_acc,
"min_accuracy_subject": (min_acc_subject, results[min_acc_subject]),
"max_accuracy_subject": (max_acc_subject, results[max_acc_subject]),
"full_accuracy_table": results_table,
} |