File size: 8,181 Bytes
77d4add
 
 
 
c69128a
b748395
532a4a4
 
b748395
 
 
 
77d4add
 
84c9e35
532a4a4
b748395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d4add
00afad7
532a4a4
 
 
 
 
 
00afad7
532a4a4
 
84c9e35
 
 
 
 
 
 
 
532a4a4
84c9e35
 
 
 
 
 
 
 
 
532a4a4
 
84c9e35
 
 
 
 
532a4a4
 
 
 
 
 
 
 
 
 
84c9e35
00afad7
 
77d4add
6cf3cc0
532a4a4
714de6d
 
5d2ee20
 
714de6d
532a4a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d2ee20
 
 
532a4a4
84c9e35
 
532a4a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c9e35
77d0f13
 
84c9e35
77d0f13
 
 
 
714de6d
532a4a4
 
 
 
 
 
 
 
 
 
 
 
 
77d4add
6d1be3a
 
 
 
 
 
 
 
77d4add
6d1be3a
532a4a4
 
 
 
 
 
 
714de6d
 
 
 
6d1be3a
 
 
 
 
 
 
 
 
532a4a4
77d4add
532a4a4
714de6d
00afad7
532a4a4
 
 
 
 
 
 
6d1be3a
 
 
 
 
 
 
 
 
 
714de6d
532a4a4
714de6d
 
 
 
 
 
 
6d1be3a
714de6d
 
 
 
 
77d4add
532a4a4
 
 
6d1be3a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch
import evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
import spaces
import logging
import numpy as np
import pandas as pd

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

accuracy_metric = evaluate.load("accuracy")
option_letters = ["A", "B", "C", "D"]
MAX_CONTEXT_WINDOW = 4096 #Hard-coded for the moment, will be replaced later to be an input from the Model.

def load_dataset_from_hf(verbose=False):
    mmlu_dataset = load_dataset("cais/mmlu", "all")
    if verbose:
        for split in mmlu_dataset.keys():
            dataset = mmlu_dataset[split]  # Access the dataset split
            
            # Log number of rows and columns
            num_rows = len(dataset)
            num_cols = len(dataset.column_names)
            
            logger.info(f"Dataset Split: {split}")
            logger.info(f"Number of Rows: {num_rows}")
            logger.info(f"Number of Columns: {num_cols}")
            
            # Log column names and their types
            column_types = {col: str(dataset.features[col].dtype) for col in dataset.column_names}
            logger.info(f"Column Names: {dataset.column_names}")
            logger.info(f"Column Types: {column_types}")
        
            # Log a sample of 5 rows
            sample_rows = dataset.select(range(min(5, num_rows)))  # Ensure we don't exceed available rows
            logger.info("Sample Rows:")
            for row in sample_rows:
                logger.info(row)
        
            logger.info("=" * 50)  # Separator for readability
    return mmlu_dataset


def format_subject(subject):
    l = subject.split("_")
    s = ""
    for entry in l:
        s += " " + entry
    return s


def format_example(df, idx, include_answer=True):
    """
    Format a single example for the prompt based on the actual dataset structure:
    - Column 0: question text
    - Column 1: subject
    - Column 2: choices as a list of strings
    - Column 3: answer as a numeric index (0-3)
    """
    # Get the question text
    prompt = df.iloc[idx, 0]
    
    # Get the choices from the dataframe
    options_list = df.iloc[idx, 2]
    assert(isinstance(options_list, list))
    
    
    for j, option in enumerate(options_list):
        prompt += f"\n{option_letters[j]}. {option}"
    
    prompt += "\nAnswer:"
    if include_answer:
        # Convert numeric answer to letter
        answer_num = df.iloc[idx, 3]
        answer_letter = {0: "A", 1: "B", 2: "C", 3: "D"}[answer_num]
        prompt += f" {answer_letter}\n\n"
    
    return prompt


def gen_prompt(df, subject, k=-1):
    prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
        format_subject(subject)
    )
    if k == -1:
        k = df.shape[0]
    for i in range(k):
        prompt += format_example(df, i, include_answer=True)
    return prompt


@torch.no_grad()
def eval (subject, model, tokenizer, dev_df, test_df, num_questions_per_subject=5, train_shots=5):
    assert all(dev_df['subject'] == subject), f"Not all items in dev_df match subject {subject}"
    assert all(test_df['subject'] == subject), f"Not all items in test_df match subject {subject}"

    logger.info(f"Subject: {subject}")
    
    cors = []
    all_probs = []

    if (train_shots < 0):
        train_shots = 0 # Make positive.

    for i in range(test_df.shape[0]):
        prompt_end = format_example(test_df, i, include_answer=False)
        train_prompt = gen_prompt(dev_df, subject, train_shots)
        prompt = train_prompt + prompt_end

        input_ids = tokenizer (prompt, return_tensors="pt").input_ids.to(model.device)


        # Reduce number of shots in the prompt to fit in context window.
        while (train_shots > 0 and input_ids.shape[-1] > MAX_CONTEXT_WINDOW):
            train_shots -= 1
            train_prompt = gen_prompt(dev_df, subject, train_shots)
            prompt = train_prompt + prompt_end
            input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(
                model.device
            )
        
        logger.info (f"Sample: {i}")


        label = test_df.iloc[i, 3]
        label_letter = {0: "A", 1: "B", 2: "C", 3: "D"}[label]

        logits = model(input_ids=input_ids).logits[0, -1]


        probs = (
            torch.nn.functional.softmax(
                torch.tensor(
                    [
                        logits[tokenizer("A").input_ids[-1]],
                        logits[tokenizer("B").input_ids[-1]],
                        logits[tokenizer("C").input_ids[-1]],
                        logits[tokenizer("D").input_ids[-1]],
                    ]
                ).float(),
                dim=0,
            )
            .detach()
            .cpu()
            .numpy()
        )
        pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]

        cor = pred == label_letter
        if (i == 0):
            logger.info (f"Prompt: {prompt}")
            logger.info(f"Label_Letter: {label_letter}")
            logger.info(f"Logits: {logits}")
            logger.info(f"Probabilities: {probs}")
            logger.info(f"Prediction: {pred}")
            logger.info(f"Correct: {cor}")

        cors.append(cor)
        all_probs.append(probs)

    acc = np.mean(cors)
    cors = np.array(cors)

    all_probs = np.array(all_probs)
    print("Average accuracy {:.3f} - {}".format(acc, subject))

    return cors, acc, all_probs

        
def evaluate_mmlu(model, tokenizer, num_subjects=-1, num_questions=5, num_shots=5):
    """
    Evaluates the model on MMLU across specified number of subjects.
    
    Args:
        model: The model to evaluate
        tokenizer: The tokenizer to use
        num_subjects (int): Number of subjects to evaluate. If -1, evaluates all subjects
        num_questions (int): Number of questions per subject
        num_shots (int): Number of few-shot examples to use
    """
    model.eval()  # Ensure Dropout and BatchNorm behave appropriately for inference
    
    dataset = load_dataset_from_hf(verbose=True)

    # Convert dataset partitions to pandas DataFrames
    test_df = pd.DataFrame(dataset['test'])
    dev_df = pd.DataFrame(dataset['dev'])

    # Sort datasets by subject and other relevant columns
    test_df = test_df.sort_values(['subject', 'question'])
    dev_df = dev_df.sort_values(['subject', 'question'])

    # Get all unique subjects
    all_subjects = sorted(test_df['subject'].unique())
    
    # Select subjects based on num_subjects parameter
    if num_subjects == -1 or num_subjects >= len(all_subjects):
        subjects = all_subjects
    else:
        # Take the first num_subjects subjects
        subjects = all_subjects[:num_subjects]

    results = {}
    all_cors = []
    results_table = []
    
    for subject in subjects:
        test_samples = test_df[test_df['subject'] == subject].head(num_questions)
        dev_samples = dev_df[dev_df['subject'] == subject].head(num_shots)

        # Log subject and sample counts
        logger.info(f"Subject: {subject}, Test Samples: {len(test_samples)}, Dev Samples: {len(dev_samples)}")

        cors, acc, probs = eval(
            subject, 
            model, 
            tokenizer, 
            dev_samples, 
            test_samples, 
            num_questions_per_subject=num_questions, 
            train_shots=num_shots
        )
        
        results[subject] = acc
        all_cors.append(cors)
        
        results_table.append({
            'Subject': subject,
            'Num_samples': len(test_samples),
            'Num_correct': int(np.sum(cors)), 
            'Accuracy': acc
        })
    
    weighted_acc = np.mean(np.concatenate(all_cors))
    
    min_acc_subject = min(results.items(), key=lambda x: x[1])[0]
    max_acc_subject = max(results.items(), key=lambda x: x[1])[0]
    
    return {
        "overall_accuracy": weighted_acc,
        "min_accuracy_subject": (min_acc_subject, results[min_acc_subject]),
        "max_accuracy_subject": (max_acc_subject, results[max_acc_subject]),
        "full_accuracy_table": results_table,
    }