import os import pickle from langchain import LLMChain, OpenAI from langchain.agents import ConversationalAgent, AgentExecutor, Tool from langchain.memory import ConversationBufferWindowMemory from langchain.chains import ConversationalRetrievalChain from langchain.text_splitter import CharacterTextSplitter from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredHTMLLoader import faiss from langchain.vectorstores.faiss import FAISS from langchain.embeddings import OpenAIEmbeddings pickle_file = "open_ai.pkl" index_file = "open_ai.index" gpt_3_5 = OpenAI(model_name='gpt-3.5-turbo',temperature=0) embeddings = OpenAIEmbeddings() chat_history = [] memory = ConversationBufferWindowMemory(memory_key="chat_history") gpt_3_5_index = None def get_search_index(): global gpt_3_5_index if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0: # Load index from pickle file with open(pickle_file, "rb") as f: search_index = pickle.load(f) else: search_index = create_index() gpt_3_5_index = search_index def create_index(): source_chunks = create_chunk_documents() search_index = search_index_from_docs(source_chunks) faiss.write_index(search_index.index, index_file) # Save index to pickle file with open(pickle_file, "wb") as f: pickle.dump(search_index, f) return search_index def search_index_from_docs(source_chunks): # print("source chunks: " + str(len(source_chunks))) # print("embeddings: " + str(embeddings)) search_index = FAISS.from_documents(source_chunks, embeddings) return search_index def get_html_files(): loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True) document_list = loader.load() return document_list def fetch_data_for_embeddings(): document_list = get_text_files() document_list.extend(get_html_files()) print("document list" + str(len(document_list))) return document_list def get_text_files(): loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True) document_list = loader.load() return document_list def create_chunk_documents(): sources = fetch_data_for_embeddings() splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0) source_chunks = splitter.split_documents(sources) print("sources" + str(len(source_chunks))) return source_chunks def get_qa_chain(gpt_3_5_index): global gpt_3_5 return ConversationalRetrievalChain.from_llm(gpt_3_5, chain_type="stuff", get_chat_history=get_chat_history, retriever=gpt_3_5_index.as_retriever(), return_source_documents=True, verbose=True) def get_chat_history(inputs) -> str: res = [] for human, ai in inputs: res.append(f"Human:{human}\nAI:{ai}") return "\n".join(res) def generate_answer(question) -> str: global chat_history, gpt_3_5_index gpt_3_5_chain = get_qa_chain(gpt_3_5_index) result = gpt_3_5_chain( {"question": question, "chat_history": chat_history, "vectordbkwargs": {"search_distance": 0.6}}) chat_history = [(question, result["answer"])] sources = [] for document in result['source_documents']: source = document.metadata['source'] sources.append(source.split('/')[-1].split('.')[0]) source = ',\n'.join(set(sources)) return result['answer'] + '\nSOURCES: ' + source def get_agent_chain(prompt, tools): global gpt_3_5 llm_chain = LLMChain(llm=gpt_3_5, prompt=prompt) agent = ConversationalAgent(llm_chain=llm_chain, tools=tools, verbose=True) agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory, intermediate_steps=True) return agent_chain def get_prompt_and_tools(): tools = get_tools() prefix = """Have a conversation with a human, answering the following questions as best you can. Always try to use Vectorstore first. Your name is Coursera Bot because your knowledge base is Coursera course. You have access to the following tools:""" suffix = """Begin! If you used vectorstore tool, ALWAYS return a "SOURCES" part in your answer" {chat_history} Question: {input} {agent_scratchpad} sources:""" prompt = ConversationalAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "chat_history", "agent_scratchpad"] ) return prompt, tools def get_tools(): tools = [ Tool( name="Vectorstore", func=generate_answer, description="useful for when you need to answer questions about the coursera course on 3D Printing.", return_direct=True )] return tools def get_custom_agent(prompt, tools): llm_chain = LLMChain(llm=gpt_3_5, prompt=prompt) output_parser = CustomOutputParser() tool_names = [tool.name for tool in tools] agent = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tool_names ) agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory, intermediate_steps=True) return agent_executor def get_prompt_and_tools_for_custom_agent(): template = """ Have a conversation with a human, answering the following questions as best you can. Always try to use Vectorstore first. Your name is Coursera QA Bot because you are a personal assistant of a Coursera Course: The 3D Printing Evolution. You have access to the following tools: {tools} To answer for the new input, use the following format: New Input: the input question you must answer Thought: Do I need to use a tool? Yes Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question. SOURCES: the sources referred to find the final answer When you have a response to say to the Human and DO NOT need to use a tool: 1. DO NOT return "SOURCES" if you did not use any tool. 2. You MUST use this format: ``` Thought: Do I need to use a tool? No AI: [your response here] ``` Begin! Remember to speak as a personal assistant when giving your final answer. ALWAYS return a "SOURCES" part in your answer, if you used any tool. Previous conversation history: {chat_history} New input: {input} {agent_scratchpad} SOURCES:""" tools = get_tools() prompt = CustomPromptTemplate( template=template, tools=tools, # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically # This includes the `intermediate_steps` variable because that is needed input_variables=["input", "intermediate_steps", "chat_history"] ) return prompt, tools