Spaces:
Runtime error
Runtime error
import os | |
import pickle | |
from langchain import LLMChain, OpenAI | |
from langchain.agents import ConversationalAgent, AgentExecutor, Tool | |
from langchain.memory import ConversationBufferWindowMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredHTMLLoader | |
import faiss | |
from langchain.vectorstores.faiss import FAISS | |
from langchain.embeddings import OpenAIEmbeddings | |
pickle_file = "open_ai.pkl" | |
index_file = "open_ai.index" | |
gpt_3_5 = OpenAI(model_name='text-davinci-002',temperature=0) | |
embeddings = OpenAIEmbeddings() | |
chat_history = [] | |
memory = ConversationBufferWindowMemory(memory_key="chat_history") | |
gpt_3_5_index = None | |
def get_search_index(): | |
global gpt_3_5_index | |
if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0: | |
# Load index from pickle file | |
with open(pickle_file, "rb") as f: | |
search_index = pickle.load(f) | |
else: | |
search_index = create_index() | |
gpt_3_5_index = search_index | |
def create_index(): | |
source_chunks = create_chunk_documents() | |
search_index = search_index_from_docs(source_chunks) | |
faiss.write_index(search_index.index, index_file) | |
# Save index to pickle file | |
with open(pickle_file, "wb") as f: | |
pickle.dump(search_index, f) | |
return search_index | |
def search_index_from_docs(source_chunks): | |
# print("source chunks: " + str(len(source_chunks))) | |
# print("embeddings: " + str(embeddings)) | |
search_index = FAISS.from_documents(source_chunks, embeddings) | |
return search_index | |
def get_html_files(): | |
loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True) | |
document_list = loader.load() | |
return document_list | |
def fetch_data_for_embeddings(): | |
document_list = get_text_files() | |
document_list.extend(get_html_files()) | |
print("document list" + str(len(document_list))) | |
return document_list | |
def get_text_files(): | |
loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True) | |
document_list = loader.load() | |
return document_list | |
def create_chunk_documents(): | |
sources = fetch_data_for_embeddings() | |
splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0) | |
source_chunks = splitter.split_documents(sources) | |
print("sources" + str(len(source_chunks))) | |
return source_chunks | |
def get_qa_chain(gpt_3_5_index): | |
global gpt_3_5 | |
return ConversationalRetrievalChain.from_llm(gpt_3_5, chain_type="stuff", get_chat_history=get_chat_history, | |
retriever=gpt_3_5_index.as_retriever(), return_source_documents=True, verbose=True) | |
def get_chat_history(inputs) -> str: | |
res = [] | |
for human, ai in inputs: | |
res.append(f"Human:{human}\nAI:{ai}") | |
return "\n".join(res) | |
def generate_answer(question) -> str: | |
global chat_history, gpt_3_5_index | |
gpt_3_5_chain = get_qa_chain(gpt_3_5_index) | |
result = gpt_3_5_chain( | |
{"question": question, "chat_history": chat_history, "vectordbkwargs": {"search_distance": 0.4}}) | |
chat_history = [(question, result["answer"])] | |
sources = [] | |
for document in result['source_documents']: | |
source = document.metadata['source'] | |
sources.append(source.split('/')[-1].split('.')[0]) | |
source = ',\n'.join(set(sources)) | |
return result['answer'] + '\nSOURCES: ' + source | |
def get_agent_chain(prompt, tools): | |
global gpt_3_5 | |
llm_chain = LLMChain(llm=gpt_3_5, prompt=prompt) | |
agent = ConversationalAgent(llm_chain=llm_chain, tools=tools, verbose=True) | |
agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory, | |
intermediate_steps=True) | |
return agent_chain | |
def get_prompt_and_tools(): | |
tools = get_tools() | |
prefix = """Have a conversation with a human, answering the following questions as best you can. Always try to use Vectorstore first. Your name is Coursera Bot because your knowledge base is Coursera course. You have access to the following tools:""" | |
suffix = """Begin! If you used vectorstore tool, ALWAYS return a "SOURCES" part in your answer" | |
{chat_history} | |
Question: {input} | |
{agent_scratchpad} | |
sources:""" | |
prompt = ConversationalAgent.create_prompt( | |
tools, | |
prefix=prefix, | |
suffix=suffix, | |
input_variables=["input", "chat_history", "agent_scratchpad"] | |
) | |
return prompt, tools | |
def get_tools(): | |
tools = [ | |
Tool( | |
name="Vectorstore", | |
func=generate_answer, | |
description="useful for when you need to answer questions about the coursera course about 3D Printing.", | |
return_direct=True | |
)] | |
return tools | |