File size: 4,671 Bytes
0e59554
 
 
7d98b2f
0e59554
aad01e3
0e59554
 
7d98b2f
aad01e3
 
 
 
 
7d98b2f
 
0e59554
aad01e3
 
0e59554
 
 
 
aad01e3
 
 
 
 
0e59554
 
 
 
 
 
 
aad01e3
 
 
 
 
 
 
 
 
 
 
7d98b2f
0e59554
 
 
 
 
 
 
 
 
 
aad01e3
0e59554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aad01e3
 
 
 
 
 
0e59554
 
 
 
 
 
 
 
 
 
 
aad01e3
0e59554
38ab472
0e59554
 
aad01e3
0e59554
 
 
dc53092
0e59554
 
aad01e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import pickle

import faiss
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.faiss import FAISS

os.environ['OPENAI_API_KEY'] = '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'

pickle_file = "open_ai.pkl"
index_file = "open_ai.index"



gpt_3_5 = ChatOpenAI(model_name='gpt-4',temperature=0.1)

embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')


chat_history = []

memory = ConversationBufferWindowMemory(memory_key="chat_history")

gpt_3_5_index = None

system_template = """You are Coursera QA Bot. Have a conversation with a human, answering the following questions as best you can.
You are a teaching assistant for a Coursera Course: The 3D Printing Evolution and can answer any question about that using vectorstore.
Use the following pieces of context to answer the users question. 
----------------
{context}"""

messages = [
    SystemMessagePromptTemplate.from_template(system_template),
    HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)

def get_search_index():
    global gpt_3_5_index
    if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0:
        # Load index from pickle file
        with open(pickle_file, "rb") as f:
            search_index = pickle.load(f)
    else:
        search_index = create_index()

    gpt_3_5_index = search_index
    return search_index


def create_index():
    source_chunks = create_chunk_documents()
    search_index = search_index_from_docs(source_chunks)
    faiss.write_index(search_index.index, index_file)
    # Save index to pickle file
    with open(pickle_file, "wb") as f:
        pickle.dump(search_index, f)
    return search_index


def search_index_from_docs(source_chunks):
    # print("source chunks: " + str(len(source_chunks)))
    # print("embeddings: " + str(embeddings))
    search_index = FAISS.from_documents(source_chunks, embeddings)
    return search_index


def get_html_files():
    loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
    document_list = loader.load()
    return document_list


def fetch_data_for_embeddings():
    document_list = get_text_files()
    document_list.extend(get_html_files())
    print("document list" + str(len(document_list)))
    return document_list


def get_text_files():
    loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True)
    document_list = loader.load()
    return document_list


def create_chunk_documents():
    sources = fetch_data_for_embeddings()

    splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0)

    source_chunks = splitter.split_documents(sources)

    print("sources" + str(len(source_chunks)))

    return source_chunks


def get_qa_chain(gpt_3_5_index):
    global gpt_3_5
    # embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76)
    # compression_retriever = ContextualCompressionRetriever(base_compressor=embeddings_filter, base_retriever=gpt_3_5_index.as_retriever())
    chain = ConversationalRetrievalChain.from_llm(gpt_3_5, gpt_3_5_index.as_retriever(), return_source_documents=True,
                                                  verbose=True, get_chat_history=get_chat_history,
                                                  combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
    return chain

def get_chat_history(inputs) -> str:
    res = []
    for human, ai in inputs:
        res.append(f"Human:{human}\nAI:{ai}")
    return "\n".join(res)


def generate_answer(question) -> str:
    global chat_history, gpt_3_5_index
    gpt_3_5_chain = get_qa_chain(gpt_3_5_index)

    result = gpt_3_5_chain(
        {"question": question, "chat_history": chat_history, "vectordbkwargs": {"search_distance": 0.6}})
    chat_history = [(question, result["answer"])]
    sources = []
    print(result['answer'])

    for document in result['source_documents']:
        source = document.metadata['source']
        sources.append(source.split('/')[-1].split('.')[0])

    source = ',\n'.join(set(sources))
    return result['answer'] + '\nSOURCES: ' + source