File size: 7,350 Bytes
0e59554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da174c1
0e59554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ab472
0e59554
 
 
 
 
dc53092
0e59554
 
f7ffde8
0e59554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ab472
0e59554
 
 
38ab472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import pickle

from langchain import LLMChain, OpenAI
from langchain.agents import ConversationalAgent, AgentExecutor, Tool
from langchain.memory import ConversationBufferWindowMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredHTMLLoader
import faiss
from langchain.vectorstores.faiss import FAISS
from langchain.embeddings import OpenAIEmbeddings



pickle_file = "open_ai.pkl"
index_file = "open_ai.index"

gpt_3_5 = OpenAI(model_name='gpt-3.5-turbo',temperature=0)

embeddings = OpenAIEmbeddings()

chat_history = []

memory = ConversationBufferWindowMemory(memory_key="chat_history")

gpt_3_5_index = None

def get_search_index():
    global gpt_3_5_index
    if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0:
        # Load index from pickle file
        with open(pickle_file, "rb") as f:
            search_index = pickle.load(f)
    else:
        search_index = create_index()

    gpt_3_5_index = search_index


def create_index():
    source_chunks = create_chunk_documents()
    search_index = search_index_from_docs(source_chunks)
    faiss.write_index(search_index.index, index_file)
    # Save index to pickle file
    with open(pickle_file, "wb") as f:
        pickle.dump(search_index, f)
    return search_index


def search_index_from_docs(source_chunks):
    # print("source chunks: " + str(len(source_chunks)))
    # print("embeddings: " + str(embeddings))
    search_index = FAISS.from_documents(source_chunks, embeddings)
    return search_index


def get_html_files():
    loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
    document_list = loader.load()
    return document_list


def fetch_data_for_embeddings():
    document_list = get_text_files()
    document_list.extend(get_html_files())
    print("document list" + str(len(document_list)))
    return document_list


def get_text_files():
    loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True)
    document_list = loader.load()
    return document_list


def create_chunk_documents():
    sources = fetch_data_for_embeddings()

    splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0)

    source_chunks = splitter.split_documents(sources)

    print("sources" + str(len(source_chunks)))

    return source_chunks


def get_qa_chain(gpt_3_5_index):
    global gpt_3_5
    return ConversationalRetrievalChain.from_llm(gpt_3_5, chain_type="stuff", get_chat_history=get_chat_history,
            retriever=gpt_3_5_index.as_retriever(), return_source_documents=True, verbose=True)

def get_chat_history(inputs) -> str:
    res = []
    for human, ai in inputs:
        res.append(f"Human:{human}\nAI:{ai}")
    return "\n".join(res)


def generate_answer(question) -> str:
    global chat_history, gpt_3_5_index
    gpt_3_5_chain = get_qa_chain(gpt_3_5_index)
    result = gpt_3_5_chain(
        {"question": question, "chat_history": chat_history, "vectordbkwargs": {"search_distance": 0.6}})
    chat_history = [(question, result["answer"])]
    sources = []

    for document in result['source_documents']:
        source = document.metadata['source']
        sources.append(source.split('/')[-1].split('.')[0])

    source = ',\n'.join(set(sources))
    return result['answer'] + '\nSOURCES: ' + source


def get_agent_chain(prompt, tools):
    global gpt_3_5
    llm_chain = LLMChain(llm=gpt_3_5, prompt=prompt)
    agent = ConversationalAgent(llm_chain=llm_chain, tools=tools, verbose=True)
    agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory,
                                                     intermediate_steps=True)
    return agent_chain


def get_prompt_and_tools():
    tools = get_tools()

    prefix = """Have a conversation with a human, answering the following questions as best you can. Always try to use Vectorstore first. Your name is Coursera Bot because your knowledge base is Coursera course. You have access to the following tools:"""
    suffix = """Begin! If you used vectorstore tool, ALWAYS return a "SOURCES" part in your answer"
    
    {chat_history}
    Question: {input}
    {agent_scratchpad}
    sources:"""
    prompt = ConversationalAgent.create_prompt(
        tools,
        prefix=prefix,
        suffix=suffix,
        input_variables=["input", "chat_history", "agent_scratchpad"]
    )
    return prompt, tools


def get_tools():
    tools = [
        Tool(
            name="Vectorstore",
            func=generate_answer,
            description="useful for when you need to answer questions about the coursera course on 3D Printing.",
            return_direct=True
        )]
    return tools

def get_custom_agent(prompt, tools):

    llm_chain = LLMChain(llm=gpt_3_5, prompt=prompt)

    output_parser = CustomOutputParser()
    tool_names = [tool.name for tool in tools]
    agent = LLMSingleActionAgent(
        llm_chain=llm_chain,
        output_parser=output_parser,
        stop=["\nObservation:"],
        allowed_tools=tool_names
    )
    agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory,
                                                        intermediate_steps=True)
    return agent_executor

def get_prompt_and_tools_for_custom_agent():
    template = """
    Have a conversation with a human, answering the following questions as best you can. 
    Always try to use Vectorstore first. 
    Your name is Coursera QA Bot because you are a personal assistant of a Coursera Course: The 3D Printing Evolution. You have access to the following tools:
    
    {tools}

    To answer for the new input, use the following format:
    
    New Input: the input question you must answer
    Thought: Do I need to use a tool? Yes
    Action: the action to take, should be one of [{tool_names}]
    Action Input: the input to the action
    Observation: the result of the action
    ... (this Thought/Action/Action Input/Observation can repeat N times)
    Thought: I now know the final answer
    Final Answer: the final answer to the original input question. SOURCES: the sources referred to find the final answer

    
    When you have a response to say to the Human and DO NOT need to use a tool:
    1. DO NOT return "SOURCES" if you did not use any tool.
    2. You MUST use this format:
    ```
    Thought: Do I need to use a tool? No
    AI: [your response here]
    ```

    Begin! Remember to speak as a personal assistant when giving your final answer.
    ALWAYS return a "SOURCES" part in your answer, if you used any tool. 
    
    Previous conversation history:
    {chat_history}
    New input: {input}
    {agent_scratchpad}
    SOURCES:"""
    tools = get_tools()
    prompt = CustomPromptTemplate(
        template=template,
        tools=tools,
        # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
        # This includes the `intermediate_steps` variable because that is needed
        input_variables=["input", "intermediate_steps", "chat_history"]
    )
    return prompt, tools