Spaces:
Runtime error
Runtime error
File size: 3,229 Bytes
afd8033 aad01e3 0e59554 afd8033 0e59554 afd8033 0e59554 129d2e2 afd8033 129d2e2 afd8033 0e59554 129d2e2 aad01e3 129d2e2 aad01e3 afd8033 aad01e3 afd8033 aad01e3 afd8033 0e59554 129d2e2 0e59554 afd8033 da7457b 50a0a9f 129d2e2 afd8033 50a0a9f e7c5694 5e6b009 dac9128 da7457b afd8033 0e59554 129d2e2 afd8033 0e59554 afd8033 0e59554 129d2e2 afd8033 129d2e2 afd8033 0e59554 129d2e2 afd8033 129d2e2 afd8033 129d2e2 afd8033 f4d9076 afd8033 129d2e2 6cfcc47 129d2e2 afd8033 129d2e2 1c5cdee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import gradio as gr
from main import index, run
from gtts import gTTS
import os, time
from transformers import pipeline
p = pipeline("automatic-speech-recognition")
"""Use text to call chat method from main.py"""
models = ["GPT-3.5", "Flan UL2", "GPT-4", "Flan T5"]
def add_text(history, text, model):
print("Question asked: " + text)
response = run_model(text, model)
history = history + [(text, response)]
print(history)
return history, ""
def run_model(text, model):
start_time = time.time()
print("start time:" + str(start_time))
response = run(text, model)
end_time = time.time()
# If response contains string `SOURCES:`, then add a \n before `SOURCES`
if "SOURCES:" in response:
response = response.replace("SOURCES:", "\nSOURCES:")
# response = response + "\n\n" + "Time taken: " + str(end_time - start_time)
print(response)
print("Time taken: " + str(end_time - start_time))
return response
def get_output(history, audio, model):
txt = p(audio)["text"]
# history.append(( (audio, ) , txt))
audio_path = 'response.wav'
response = run_model(txt, model)
# Remove all text from SOURCES: to the end of the string
trimmed_response = response.split("SOURCES:")[0]
myobj = gTTS(text=trimmed_response, lang='en', slow=False)
myobj.save(audio_path)
# split audio by / and keep the last element
# audio = audio.split("/")[-1]
# audio = audio + ".wav"
history.append(( (audio, ) , (audio_path, )))
print(history)
return history
def set_model(history, model):
print("Model selected: " + model)
history = get_first_message(history)
index(model)
return history
def get_first_message(history):
history = [(None,
'Learn about <a href="https://www.coursera.org/learn/3d-printing-revolution/home">3D printing Revolution</a> course with referred sources. Try out the new voice to voice Q&A on the course! ')]
return history
def bot(history):
return history
with gr.Blocks() as demo:
chatbot = gr.Chatbot(get_first_message([]), elem_id="chatbot").style(height=600)
with gr.Row():
# Create radio button to select model
radio = gr.Radio(models, label="Choose a model", value="GPT-3.5", type="value")
with gr.Row():
with gr.Column(scale=0.75):
txt = gr.Textbox(
label="Coursera Voice Q&A Bot",
placeholder="Enter text and press enter, or upload an image", lines=1
).style(container=False)
with gr.Column(scale=0.25):
audio = gr.Audio(source="microphone", type="filepath").style(container=False)
txt.submit(add_text, [chatbot, txt, radio], [chatbot, txt], postprocess=False).then(
bot, chatbot, chatbot
)
audio.change(fn=get_output, inputs=[chatbot, audio, radio], outputs=[chatbot]).then(
bot, chatbot, chatbot
)
radio.change(fn=set_model, inputs=[chatbot, radio], outputs=[chatbot]).then(bot, chatbot, chatbot)
audio.change(lambda:None, None, audio)
set_model(chatbot, radio.value)
if __name__ == "__main__":
demo.queue()
demo.queue(concurrency_count=5)
demo.launch(debug=True)
|