Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
4 |
import pandas as pd
|
5 |
from datetime import datetime, timedelta, timezone
|
6 |
import torch
|
7 |
-
from config import hugging_face_token, init_google_sheets_client, models,
|
8 |
import spaces
|
9 |
|
10 |
# Hack for ZeroGPU
|
@@ -48,28 +48,14 @@ def load_model(model_name):
|
|
48 |
del model
|
49 |
torch.cuda.empty_cache()
|
50 |
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
52 |
-
models[model_name],
|
53 |
-
padding_side='left',
|
54 |
-
token=hugging_face_token,
|
55 |
-
trust_remote_code=True
|
56 |
-
)
|
57 |
|
58 |
# Ensure the padding token is set
|
59 |
if tokenizer.pad_token is None:
|
60 |
tokenizer.pad_token = tokenizer.eos_token
|
61 |
tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})
|
62 |
|
63 |
-
model = AutoModelForCausalLM.from_pretrained(
|
64 |
-
models[model_name],
|
65 |
-
token=hugging_face_token,
|
66 |
-
trust_remote_code=True
|
67 |
-
)
|
68 |
-
|
69 |
-
# Only move to CUDA if it's not a quantized model
|
70 |
-
if model_name not in quantized_models:
|
71 |
-
model = model.to("cuda")
|
72 |
-
|
73 |
selected_model = model_name
|
74 |
except Exception as e:
|
75 |
print(f"Error loading model {model_name}: {e}")
|
@@ -90,12 +76,6 @@ def interact(user_input, history, interaction_count):
|
|
90 |
if tokenizer is None or model is None:
|
91 |
raise ValueError("Tokenizer or model is not initialized.")
|
92 |
|
93 |
-
# Determine the device to use (either CUDA if available, or CPU)
|
94 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
95 |
-
|
96 |
-
# Ensure the model is on the correct device
|
97 |
-
model.to(device)
|
98 |
-
|
99 |
if interaction_count >= MAX_INTERACTIONS:
|
100 |
user_input += ". Thank you for your questions. Our session is now over. Goodbye!"
|
101 |
|
@@ -108,8 +88,8 @@ def interact(user_input, history, interaction_count):
|
|
108 |
|
109 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
110 |
|
111 |
-
#
|
112 |
-
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(
|
113 |
chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id, temperature=0.1)
|
114 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
115 |
|
@@ -202,9 +182,6 @@ def load_user_guide():
|
|
202 |
with open('user_guide.txt', 'r') as file:
|
203 |
return file.read()
|
204 |
|
205 |
-
# Combine both model dictionaries
|
206 |
-
all_models = {**models, **quantized_models}
|
207 |
-
|
208 |
# Create the chat interface using Gradio Blocks
|
209 |
with gr.Blocks() as demo:
|
210 |
with gr.Tabs():
|
@@ -213,7 +190,7 @@ with gr.Blocks() as demo:
|
|
213 |
|
214 |
gr.Markdown("## Context")
|
215 |
with gr.Group():
|
216 |
-
model_dropdown = gr.Dropdown(choices=list(
|
217 |
user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
|
218 |
initial_story = stories[0]["title"] if stories else None
|
219 |
story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
|
@@ -244,4 +221,4 @@ with gr.Blocks() as demo:
|
|
244 |
send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json, interaction_count], outputs=[chatbot_input, chatbot_output, chat_history_json, interaction_count])
|
245 |
save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
|
246 |
|
247 |
-
demo.launch()
|
|
|
4 |
import pandas as pd
|
5 |
from datetime import datetime, timedelta, timezone
|
6 |
import torch
|
7 |
+
from config import hugging_face_token, init_google_sheets_client, models, default_model_name, user_names, google_sheets_name, MAX_INTERACTIONS
|
8 |
import spaces
|
9 |
|
10 |
# Hack for ZeroGPU
|
|
|
48 |
del model
|
49 |
torch.cuda.empty_cache()
|
50 |
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(models[model_name], padding_side='left', token=hugging_face_token, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Ensure the padding token is set
|
54 |
if tokenizer.pad_token is None:
|
55 |
tokenizer.pad_token = tokenizer.eos_token
|
56 |
tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})
|
57 |
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(models[model_name], token=hugging_face_token, trust_remote_code=True).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
selected_model = model_name
|
60 |
except Exception as e:
|
61 |
print(f"Error loading model {model_name}: {e}")
|
|
|
76 |
if tokenizer is None or model is None:
|
77 |
raise ValueError("Tokenizer or model is not initialized.")
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
if interaction_count >= MAX_INTERACTIONS:
|
80 |
user_input += ". Thank you for your questions. Our session is now over. Goodbye!"
|
81 |
|
|
|
88 |
|
89 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
90 |
|
91 |
+
# Generate response using selected model
|
92 |
+
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
|
93 |
chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id, temperature=0.1)
|
94 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
95 |
|
|
|
182 |
with open('user_guide.txt', 'r') as file:
|
183 |
return file.read()
|
184 |
|
|
|
|
|
|
|
185 |
# Create the chat interface using Gradio Blocks
|
186 |
with gr.Blocks() as demo:
|
187 |
with gr.Tabs():
|
|
|
190 |
|
191 |
gr.Markdown("## Context")
|
192 |
with gr.Group():
|
193 |
+
model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select Model", value=selected_model)
|
194 |
user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
|
195 |
initial_story = stories[0]["title"] if stories else None
|
196 |
story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
|
|
|
221 |
send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json, interaction_count], outputs=[chatbot_input, chatbot_output, chat_history_json, interaction_count])
|
222 |
save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
|
223 |
|
224 |
+
demo.launch()
|