Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
4 |
import pandas as pd
|
5 |
from datetime import datetime, timedelta, timezone
|
6 |
import torch
|
7 |
-
from config import hugging_face_token, init_google_sheets_client, models, default_model_name, user_names, google_sheets_name,
|
8 |
import spaces
|
9 |
|
10 |
# Hack for ZeroGPU
|
@@ -13,8 +13,8 @@ torch.jit.script = lambda f: f
|
|
13 |
# Initialize Google Sheets client
|
14 |
client = init_google_sheets_client()
|
15 |
sheet = client.open(google_sheets_name)
|
16 |
-
stories_sheet = sheet.worksheet("Stories") # Assuming stories are in
|
17 |
-
|
18 |
|
19 |
# Load stories from Google Sheets
|
20 |
def load_stories():
|
@@ -23,14 +23,14 @@ def load_stories():
|
|
23 |
return stories
|
24 |
|
25 |
# Load system prompts from Google Sheets
|
26 |
-
def
|
27 |
-
|
28 |
-
|
29 |
-
return
|
30 |
|
31 |
-
# Load available stories and prompts
|
32 |
stories = load_stories()
|
33 |
-
|
34 |
|
35 |
# Initialize the selected model
|
36 |
selected_model = default_model_name
|
@@ -65,21 +65,18 @@ def load_model(model_name):
|
|
65 |
# Ensure the initial model is loaded
|
66 |
tokenizer, model = load_model(selected_model)
|
67 |
|
68 |
-
# Chat history and interaction
|
69 |
chat_history = []
|
|
|
70 |
|
71 |
# Function to handle interaction with model
|
72 |
@spaces.GPU
|
73 |
-
def interact(user_input, history
|
74 |
-
global tokenizer, model
|
75 |
try:
|
76 |
if tokenizer is None or model is None:
|
77 |
raise ValueError("Tokenizer or model is not initialized.")
|
78 |
|
79 |
-
# Concatenate a final message if max interactions are reached
|
80 |
-
if interaction_count >= MAX_INTERACTIONS - 1:
|
81 |
-
user_input += ". Thank you for the questions. That's all for now. Goodbye!"
|
82 |
-
|
83 |
messages = history + [{"role": "user", "content": user_input}]
|
84 |
|
85 |
# Ensure roles alternate correctly
|
@@ -89,10 +86,6 @@ def interact(user_input, history, interaction_count):
|
|
89 |
|
90 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
91 |
|
92 |
-
# Check if the maximum number of interactions has been reached
|
93 |
-
interaction_count += 1
|
94 |
-
print(f"Interaction count: {interaction_count}") # Print the interaction count
|
95 |
-
|
96 |
# Generate response using selected model
|
97 |
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
|
98 |
chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id) # Increase max_new_tokens
|
@@ -101,9 +94,16 @@ def interact(user_input, history, interaction_count):
|
|
101 |
# Update chat history with generated response
|
102 |
history.append({"role": "user", "content": user_input})
|
103 |
history.append({"role": "assistant", "content": response})
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
|
106 |
-
return "", formatted_history, history
|
107 |
except Exception as e:
|
108 |
if torch.cuda.is_available():
|
109 |
torch.cuda.empty_cache()
|
@@ -112,16 +112,13 @@ def interact(user_input, history, interaction_count):
|
|
112 |
|
113 |
# Function to send selected story and initial message
|
114 |
def send_selected_story(title, model_name, system_prompt):
|
115 |
-
global chat_history
|
116 |
-
global selected_story
|
117 |
-
global data # Ensure data is reset
|
118 |
data = [] # Reset data for new story
|
|
|
119 |
tokenizer, model = load_model(model_name)
|
120 |
selected_story = title
|
121 |
-
story_text = ""
|
122 |
for story in stories:
|
123 |
if story["title"] == title:
|
124 |
-
story_text = story["story"]
|
125 |
system_prompt = f"""
|
126 |
{system_prompt}
|
127 |
Here is the story:
|
@@ -136,9 +133,9 @@ Here is the story:
|
|
136 |
|
137 |
# Generate the first question based on the story
|
138 |
question_prompt = "Please ask a simple question about the story to encourage interaction."
|
139 |
-
_, formatted_history, chat_history
|
140 |
|
141 |
-
return formatted_history, chat_history, gr.update(value=[]),
|
142 |
else:
|
143 |
print("Combined message is empty.")
|
144 |
else:
|
@@ -178,11 +175,15 @@ def save_comment_score(chat_responses, score, comment, story_name, user_name, sy
|
|
178 |
])
|
179 |
|
180 |
# Append data to Google Sheets
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
183 |
|
184 |
df = pd.DataFrame(data, columns=["Timestamp", "User Name", "Model Name", "System Prompt", "Story Name", "User Input", "Chat Response", "Score", "Comment"])
|
185 |
-
return df, gr.update(value="") #
|
186 |
|
187 |
# Create the chat interface using Gradio Blocks
|
188 |
with gr.Blocks() as demo:
|
@@ -192,11 +193,11 @@ with gr.Blocks() as demo:
|
|
192 |
user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
|
193 |
initial_story = stories[0]["title"] if stories else None
|
194 |
story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
|
195 |
-
system_prompt_dropdown = gr.Dropdown(choices=prompts, label="Select System Prompt")
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
|
|
200 |
|
201 |
with gr.Row():
|
202 |
with gr.Column(scale=1):
|
@@ -215,10 +216,9 @@ with gr.Blocks() as demo:
|
|
215 |
data_table = gr.DataFrame(headers=["User Input", "Chat Response", "Score", "Comment"])
|
216 |
|
217 |
chat_history_json = gr.JSON(value=[], visible=False)
|
218 |
-
interaction_count_state = gr.State(0)
|
219 |
|
220 |
-
send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_dropdown], outputs=[chatbot_output, chat_history_json, data_table, selected_story_textbox
|
221 |
-
send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json
|
222 |
save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
|
223 |
|
224 |
demo.launch()
|
|
|
4 |
import pandas as pd
|
5 |
from datetime import datetime, timedelta, timezone
|
6 |
import torch
|
7 |
+
from config import hugging_face_token, init_google_sheets_client, models, default_model_name, user_names, google_sheets_name, max_interactions
|
8 |
import spaces
|
9 |
|
10 |
# Hack for ZeroGPU
|
|
|
13 |
# Initialize Google Sheets client
|
14 |
client = init_google_sheets_client()
|
15 |
sheet = client.open(google_sheets_name)
|
16 |
+
stories_sheet = sheet.worksheet("Stories") # Assuming stories are in the second sheet (index 1)
|
17 |
+
system_prompts_sheet = sheet.worksheet("System Prompts") # Assuming system prompts are in a separate sheet
|
18 |
|
19 |
# Load stories from Google Sheets
|
20 |
def load_stories():
|
|
|
23 |
return stories
|
24 |
|
25 |
# Load system prompts from Google Sheets
|
26 |
+
def load_system_prompts():
|
27 |
+
system_prompts_data = system_prompts_sheet.get_all_values()
|
28 |
+
system_prompts = [prompt[0] for prompt in system_prompts_data[1:]] # Skip header row
|
29 |
+
return system_prompts
|
30 |
|
31 |
+
# Load available stories and system prompts
|
32 |
stories = load_stories()
|
33 |
+
system_prompts = load_system_prompts()
|
34 |
|
35 |
# Initialize the selected model
|
36 |
selected_model = default_model_name
|
|
|
65 |
# Ensure the initial model is loaded
|
66 |
tokenizer, model = load_model(selected_model)
|
67 |
|
68 |
+
# Chat history and interaction counter
|
69 |
chat_history = []
|
70 |
+
interaction_count = 0
|
71 |
|
72 |
# Function to handle interaction with model
|
73 |
@spaces.GPU
|
74 |
+
def interact(user_input, history):
|
75 |
+
global tokenizer, model, interaction_count
|
76 |
try:
|
77 |
if tokenizer is None or model is None:
|
78 |
raise ValueError("Tokenizer or model is not initialized.")
|
79 |
|
|
|
|
|
|
|
|
|
80 |
messages = history + [{"role": "user", "content": user_input}]
|
81 |
|
82 |
# Ensure roles alternate correctly
|
|
|
86 |
|
87 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
88 |
|
|
|
|
|
|
|
|
|
89 |
# Generate response using selected model
|
90 |
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
|
91 |
chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id) # Increase max_new_tokens
|
|
|
94 |
# Update chat history with generated response
|
95 |
history.append({"role": "user", "content": user_input})
|
96 |
history.append({"role": "assistant", "content": response})
|
97 |
+
|
98 |
+
interaction_count += 1
|
99 |
+
print(f"Interaction count: {interaction_count}")
|
100 |
+
|
101 |
+
if interaction_count >= max_interactions:
|
102 |
+
response += ". Thank you for the questions. That's all for now. Goodbye!"
|
103 |
+
history[-1]["content"] = response
|
104 |
+
|
105 |
formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
|
106 |
+
return "", formatted_history, history
|
107 |
except Exception as e:
|
108 |
if torch.cuda.is_available():
|
109 |
torch.cuda.empty_cache()
|
|
|
112 |
|
113 |
# Function to send selected story and initial message
|
114 |
def send_selected_story(title, model_name, system_prompt):
|
115 |
+
global chat_history, selected_story, data, interaction_count
|
|
|
|
|
116 |
data = [] # Reset data for new story
|
117 |
+
interaction_count = 0 # Reset interaction counter
|
118 |
tokenizer, model = load_model(model_name)
|
119 |
selected_story = title
|
|
|
120 |
for story in stories:
|
121 |
if story["title"] == title:
|
|
|
122 |
system_prompt = f"""
|
123 |
{system_prompt}
|
124 |
Here is the story:
|
|
|
133 |
|
134 |
# Generate the first question based on the story
|
135 |
question_prompt = "Please ask a simple question about the story to encourage interaction."
|
136 |
+
_, formatted_history, chat_history = interact(question_prompt, chat_history)
|
137 |
|
138 |
+
return formatted_history, chat_history, gr.update(value=[]), story["story"] # Reset the data table and return the story
|
139 |
else:
|
140 |
print("Combined message is empty.")
|
141 |
else:
|
|
|
175 |
])
|
176 |
|
177 |
# Append data to Google Sheets
|
178 |
+
try:
|
179 |
+
user_sheet = client.open(google_sheets_name).worksheet(user_name)
|
180 |
+
except gspread.exceptions.WorksheetNotFound:
|
181 |
+
user_sheet = client.open(google_sheets_name).add_worksheet(title=user_name, rows="100", cols="20")
|
182 |
+
|
183 |
+
user_sheet.append_row([timestamp_str, user_name, model_name, system_prompt, story_name, last_user_message, last_assistant_message, score, comment])
|
184 |
|
185 |
df = pd.DataFrame(data, columns=["Timestamp", "User Name", "Model Name", "System Prompt", "Story Name", "User Input", "Chat Response", "Score", "Comment"])
|
186 |
+
return df[["User Input", "Chat Response", "Score", "Comment"]], gr.update(value="") # Show only the required columns and clear the comment input box
|
187 |
|
188 |
# Create the chat interface using Gradio Blocks
|
189 |
with gr.Blocks() as demo:
|
|
|
193 |
user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
|
194 |
initial_story = stories[0]["title"] if stories else None
|
195 |
story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
|
|
|
196 |
|
197 |
+
system_prompt_dropdown = gr.Dropdown(choices=system_prompts, label="Select System Prompt")
|
198 |
|
199 |
+
send_story_button = gr.Button("Send Story")
|
200 |
+
selected_story_textbox = gr.Textbox(label="Selected Story", lines=10, interactive=False)
|
201 |
|
202 |
with gr.Row():
|
203 |
with gr.Column(scale=1):
|
|
|
216 |
data_table = gr.DataFrame(headers=["User Input", "Chat Response", "Score", "Comment"])
|
217 |
|
218 |
chat_history_json = gr.JSON(value=[], visible=False)
|
|
|
219 |
|
220 |
+
send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_dropdown], outputs=[chatbot_output, chat_history_json, data_table, selected_story_textbox])
|
221 |
+
send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json], outputs=[chatbot_input, chatbot_output, chat_history_json])
|
222 |
save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
|
223 |
|
224 |
demo.launch()
|