Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from datetime import datetime, timedelta, timezone
|
|
6 |
import torch
|
7 |
from config import hugging_face_token, init_google_sheets_client, models, default_model_name, user_names, google_sheets_name, MAX_INTERACTIONS
|
8 |
import spaces
|
9 |
-
import gspread
|
10 |
|
11 |
# Hack for ZeroGPU
|
12 |
torch.jit.script = lambda f: f
|
@@ -66,7 +65,7 @@ def load_model(model_name):
|
|
66 |
# Ensure the initial model is loaded
|
67 |
tokenizer, model = load_model(selected_model)
|
68 |
|
69 |
-
# Chat history and interaction
|
70 |
chat_history = []
|
71 |
interaction_count = 0
|
72 |
|
@@ -78,12 +77,6 @@ def interact(user_input, history, interaction_count):
|
|
78 |
if tokenizer is None or model is None:
|
79 |
raise ValueError("Tokenizer or model is not initialized.")
|
80 |
|
81 |
-
interaction_count += 1
|
82 |
-
print(f"Interaction count: {interaction_count}")
|
83 |
-
|
84 |
-
if interaction_count >= MAX_INTERACTIONS:
|
85 |
-
user_input += ". Thank you for the questions. That's all for now. Goodbye!"
|
86 |
-
|
87 |
messages = history + [{"role": "user", "content": user_input}]
|
88 |
|
89 |
# Ensure roles alternate correctly
|
@@ -95,11 +88,16 @@ def interact(user_input, history, interaction_count):
|
|
95 |
|
96 |
# Generate response using selected model
|
97 |
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
|
98 |
-
chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)
|
99 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
100 |
|
101 |
# Update chat history with generated response
|
102 |
history.append({"role": "user", "content": user_input})
|
|
|
|
|
|
|
|
|
|
|
103 |
history.append({"role": "assistant", "content": response})
|
104 |
|
105 |
formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
|
@@ -112,8 +110,11 @@ def interact(user_input, history, interaction_count):
|
|
112 |
|
113 |
# Function to send selected story and initial message
|
114 |
def send_selected_story(title, model_name, system_prompt):
|
115 |
-
global chat_history,
|
|
|
|
|
116 |
data = [] # Reset data for new story
|
|
|
117 |
tokenizer, model = load_model(model_name)
|
118 |
selected_story = title
|
119 |
for story in stories:
|
@@ -131,9 +132,10 @@ Here is the story:
|
|
131 |
chat_history.append({"role": "system", "content": combined_message})
|
132 |
|
133 |
# Generate the first question based on the story
|
134 |
-
|
|
|
135 |
|
136 |
-
return formatted_history, chat_history, gr.update(value=[]), story["story"]
|
137 |
else:
|
138 |
print("Combined message is empty.")
|
139 |
else:
|
@@ -192,7 +194,7 @@ with gr.Blocks() as demo:
|
|
192 |
initial_story = stories[0]["title"] if stories else None
|
193 |
story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
|
194 |
|
195 |
-
system_prompt_dropdown = gr.Dropdown(choices=system_prompts, label="Select System Prompt")
|
196 |
|
197 |
send_story_button = gr.Button("Send Story")
|
198 |
selected_story_textbox = gr.Textbox(label="Selected Story", lines=10, interactive=False)
|
@@ -214,10 +216,9 @@ with gr.Blocks() as demo:
|
|
214 |
data_table = gr.DataFrame(headers=["User Input", "Chat Response", "Score", "Comment"])
|
215 |
|
216 |
chat_history_json = gr.JSON(value=[], visible=False)
|
217 |
-
interaction_count_state = gr.State(0)
|
218 |
|
219 |
-
send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_dropdown], outputs=[chatbot_output, chat_history_json, data_table, selected_story_textbox
|
220 |
-
send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json,
|
221 |
save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
|
222 |
|
223 |
demo.launch()
|
|
|
6 |
import torch
|
7 |
from config import hugging_face_token, init_google_sheets_client, models, default_model_name, user_names, google_sheets_name, MAX_INTERACTIONS
|
8 |
import spaces
|
|
|
9 |
|
10 |
# Hack for ZeroGPU
|
11 |
torch.jit.script = lambda f: f
|
|
|
65 |
# Ensure the initial model is loaded
|
66 |
tokenizer, model = load_model(selected_model)
|
67 |
|
68 |
+
# Chat history and interaction count
|
69 |
chat_history = []
|
70 |
interaction_count = 0
|
71 |
|
|
|
77 |
if tokenizer is None or model is None:
|
78 |
raise ValueError("Tokenizer or model is not initialized.")
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
messages = history + [{"role": "user", "content": user_input}]
|
81 |
|
82 |
# Ensure roles alternate correctly
|
|
|
88 |
|
89 |
# Generate response using selected model
|
90 |
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
|
91 |
+
chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)
|
92 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
93 |
|
94 |
# Update chat history with generated response
|
95 |
history.append({"role": "user", "content": user_input})
|
96 |
+
|
97 |
+
# Check if it's the last interaction
|
98 |
+
interaction_count += 1
|
99 |
+
if interaction_count >= MAX_INTERACTIONS:
|
100 |
+
response += ". Thank you for the questions. That's all for now. Goodbye!"
|
101 |
history.append({"role": "assistant", "content": response})
|
102 |
|
103 |
formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
|
|
|
110 |
|
111 |
# Function to send selected story and initial message
|
112 |
def send_selected_story(title, model_name, system_prompt):
|
113 |
+
global chat_history, interaction_count
|
114 |
+
global selected_story
|
115 |
+
global data # Ensure data is reset
|
116 |
data = [] # Reset data for new story
|
117 |
+
interaction_count = 0 # Reset interaction count
|
118 |
tokenizer, model = load_model(model_name)
|
119 |
selected_story = title
|
120 |
for story in stories:
|
|
|
132 |
chat_history.append({"role": "system", "content": combined_message})
|
133 |
|
134 |
# Generate the first question based on the story
|
135 |
+
question_prompt = "Please ask a simple question about the story to encourage interaction."
|
136 |
+
_, formatted_history, chat_history, interaction_count = interact(question_prompt, chat_history, interaction_count)
|
137 |
|
138 |
+
return formatted_history, chat_history, gr.update(value=[]), story["story"] # Reset the data table and return the story
|
139 |
else:
|
140 |
print("Combined message is empty.")
|
141 |
else:
|
|
|
194 |
initial_story = stories[0]["title"] if stories else None
|
195 |
story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
|
196 |
|
197 |
+
system_prompt_dropdown = gr.Dropdown(choices=system_prompts, label="Select System Prompt", value=system_prompts[0])
|
198 |
|
199 |
send_story_button = gr.Button("Send Story")
|
200 |
selected_story_textbox = gr.Textbox(label="Selected Story", lines=10, interactive=False)
|
|
|
216 |
data_table = gr.DataFrame(headers=["User Input", "Chat Response", "Score", "Comment"])
|
217 |
|
218 |
chat_history_json = gr.JSON(value=[], visible=False)
|
|
|
219 |
|
220 |
+
send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_dropdown], outputs=[chatbot_output, chat_history_json, data_table, selected_story_textbox])
|
221 |
+
send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json, gr.State(interaction_count)], outputs=[chatbot_input, chatbot_output, chat_history_json, gr.State(interaction_count)])
|
222 |
save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
|
223 |
|
224 |
demo.launch()
|