Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,207 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
for
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import pandas as pd
|
5 |
+
from datetime import datetime, timedelta, timezone
|
6 |
+
import torch
|
7 |
+
from config import hugging_face_token, init_google_sheets_client, models, default_model_name, user_names, google_sheets_name
|
8 |
+
import spaces
|
9 |
+
|
10 |
+
# Hack for ZeroGPU
|
11 |
+
torch.jit.script = lambda f: f
|
12 |
+
|
13 |
+
# Initialize Google Sheets client
|
14 |
+
client = init_google_sheets_client()
|
15 |
+
sheet = client.open(google_sheets_name)
|
16 |
+
stories_sheet = sheet.get_worksheet(1) # Assuming stories are in the second sheet (index 1)
|
17 |
+
|
18 |
+
# Load stories from Google Sheets
|
19 |
+
def load_stories():
|
20 |
+
stories_data = stories_sheet.get_all_values()
|
21 |
+
stories = [{"title": story[0], "story": story[1]} for story in stories_data if story[0] != "Title"] # Skip header row
|
22 |
+
return stories
|
23 |
+
|
24 |
+
# Load available stories
|
25 |
+
stories = load_stories()
|
26 |
+
|
27 |
+
# Initialize the selected model
|
28 |
+
selected_model = default_model_name
|
29 |
+
tokenizer, model = None, None
|
30 |
+
|
31 |
+
# Initialize the data list
|
32 |
+
data = []
|
33 |
+
|
34 |
+
# Load the model and tokenizer once at the beginning
|
35 |
+
def load_model(model_name):
|
36 |
+
global tokenizer, model, selected_model
|
37 |
+
try:
|
38 |
+
# Release the memory of the previous model if exists
|
39 |
+
if model is not None:
|
40 |
+
del model
|
41 |
+
torch.cuda.empty_cache()
|
42 |
+
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(models[model_name], padding_side='left', token=hugging_face_token, trust_remote_code=True)
|
44 |
+
|
45 |
+
# Ensure the padding token is set
|
46 |
+
if tokenizer.pad_token is None:
|
47 |
+
tokenizer.pad_token = tokenizer.eos_token
|
48 |
+
tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})
|
49 |
+
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(models[model_name], token=hugging_face_token, trust_remote_code=True).to("cuda")
|
51 |
+
selected_model = model_name
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error loading model {model_name}: {e}")
|
54 |
+
raise e
|
55 |
+
return tokenizer, model
|
56 |
+
|
57 |
+
# Ensure the initial model is loaded
|
58 |
+
tokenizer, model = load_model(selected_model)
|
59 |
+
|
60 |
+
# Chat history
|
61 |
+
chat_history = []
|
62 |
+
|
63 |
+
# Function to handle interaction with model
|
64 |
+
@spaces.GPU
|
65 |
+
def interact(user_input, history):
|
66 |
+
global tokenizer, model
|
67 |
+
try:
|
68 |
+
if tokenizer is None or model is None:
|
69 |
+
raise ValueError("Tokenizer or model is not initialized.")
|
70 |
+
|
71 |
+
messages = history + [{"role": "user", "content": user_input}]
|
72 |
+
|
73 |
+
# Ensure roles alternate correctly
|
74 |
+
for i in range(1, len(messages)):
|
75 |
+
if messages[i-1].get("role") == messages[i].get("role"):
|
76 |
+
raise ValueError("Conversation roles must alternate user/assistant/user/assistant/...")
|
77 |
+
|
78 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
79 |
+
|
80 |
+
# Generate response using selected model
|
81 |
+
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
|
82 |
+
chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id) # Increase max_new_tokens
|
83 |
+
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
84 |
+
|
85 |
+
# Update chat history with generated response
|
86 |
+
history.append({"role": "user", "content": user_input})
|
87 |
+
history.append({"role": "assistant", "content": response})
|
88 |
+
|
89 |
+
formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
|
90 |
+
return "", formatted_history, history
|
91 |
+
except Exception as e:
|
92 |
+
if torch.cuda.is_available():
|
93 |
+
torch.cuda.empty_cache()
|
94 |
+
print(f"Error during interaction: {e}")
|
95 |
+
raise gr.Error(f"An error occurred during interaction: {str(e)}")
|
96 |
+
|
97 |
+
# Function to send selected story and initial message
|
98 |
+
def send_selected_story(title, model_name, system_prompt):
|
99 |
+
global chat_history
|
100 |
+
global selected_story
|
101 |
+
global data # Ensure data is reset
|
102 |
+
data = [] # Reset data for new story
|
103 |
+
tokenizer, model = load_model(model_name)
|
104 |
+
selected_story = title
|
105 |
+
for story in stories:
|
106 |
+
if story["title"] == title:
|
107 |
+
system_prompt = f"""
|
108 |
+
{system_prompt}
|
109 |
+
Here is the story:
|
110 |
+
---
|
111 |
+
{story['story']}
|
112 |
+
---
|
113 |
+
"""
|
114 |
+
combined_message = system_prompt.strip()
|
115 |
+
if combined_message:
|
116 |
+
chat_history = [] # Reset chat history
|
117 |
+
chat_history.append({"role": "system", "content": combined_message})
|
118 |
+
|
119 |
+
# Generate the first question based on the story
|
120 |
+
question_prompt = "Please ask a simple question about the story to encourage interaction."
|
121 |
+
_, formatted_history, chat_history = interact(question_prompt, chat_history)
|
122 |
+
|
123 |
+
return formatted_history, chat_history, gr.update(value=[]) # Reset the data table
|
124 |
+
else:
|
125 |
+
print("Combined message is empty.")
|
126 |
+
else:
|
127 |
+
print("Story title does not match.")
|
128 |
+
|
129 |
+
# Function to save comment and score
|
130 |
+
def save_comment_score(chat_responses, score, comment, story_name, user_name):
|
131 |
+
last_user_message = ""
|
132 |
+
last_assistant_message = ""
|
133 |
+
|
134 |
+
# Find the last user and assistant messages
|
135 |
+
for message in reversed(chat_responses):
|
136 |
+
if isinstance(message, list) and len(message) == 2:
|
137 |
+
if message[0] and not last_user_message:
|
138 |
+
last_user_message = message[0]
|
139 |
+
elif message[1] and not last_assistant_message:
|
140 |
+
last_assistant_message = message[1]
|
141 |
+
|
142 |
+
if last_user_message and last_assistant_message:
|
143 |
+
break
|
144 |
+
|
145 |
+
timestamp = datetime.now(timezone.utc) - timedelta(hours=3) # Adjust to GMT-3
|
146 |
+
timestamp_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
147 |
+
model_name = selected_model
|
148 |
+
|
149 |
+
# Append data to local data storage
|
150 |
+
data.append([
|
151 |
+
timestamp_str,
|
152 |
+
user_name,
|
153 |
+
model_name,
|
154 |
+
story_name,
|
155 |
+
last_user_message,
|
156 |
+
last_assistant_message,
|
157 |
+
score,
|
158 |
+
comment
|
159 |
+
])
|
160 |
+
|
161 |
+
# Append data to Google Sheets
|
162 |
+
sheet = client.open(google_sheets_name).sheet1 # Assuming results are saved in sheet1
|
163 |
+
sheet.append_row([timestamp_str, user_name, model_name, story_name, last_user_message, last_assistant_message, score, comment])
|
164 |
+
|
165 |
+
df = pd.DataFrame(data, columns=["Timestamp", "User Name", "Model Name", "Story Name", "User Input", "Chat Response", "Score", "Comment"])
|
166 |
+
return df, gr.update(value="") # Clear the comment input box
|
167 |
+
|
168 |
+
# Create the chat interface using Gradio Blocks
|
169 |
+
with gr.Blocks() as demo:
|
170 |
+
gr.Markdown("# Chat with Model")
|
171 |
+
|
172 |
+
model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select Model", value=selected_model)
|
173 |
+
user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
|
174 |
+
initial_story = stories[0]["title"] if stories else None
|
175 |
+
story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
|
176 |
+
|
177 |
+
default_system_prompt = ("You are friendly chatbot and you will interact with a child who speaks Spanish and is learning English as a foreign language. "
|
178 |
+
"Everything you write should be in English. I will provide you with a short children's story in English. "
|
179 |
+
"After reading the story, please ask the child a series of five simple questions about it, one at a time, to encourage ongoing interaction. "
|
180 |
+
"Wait for the child's response to each question before asking the next one.")
|
181 |
+
system_prompt_input = gr.Textbox(lines=5, value=default_system_prompt, label="System Prompt")
|
182 |
+
|
183 |
+
send_story_button = gr.Button("Send Story")
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
with gr.Column(scale=1):
|
187 |
+
chatbot_input = gr.Textbox(placeholder="Type your message here...", label="User Input")
|
188 |
+
send_message_button = gr.Button("Send")
|
189 |
+
|
190 |
+
with gr.Column(scale=2):
|
191 |
+
chatbot_output = gr.Chatbot(label="Chat History")
|
192 |
+
|
193 |
+
with gr.Row():
|
194 |
+
with gr.Column(scale=1):
|
195 |
+
score_input = gr.Slider(minimum=0, maximum=5, step=1, label="Score")
|
196 |
+
comment_input = gr.Textbox(placeholder="Add a comment...", label="Comment")
|
197 |
+
save_button = gr.Button("Save Score and Comment")
|
198 |
+
|
199 |
+
data_table = gr.DataFrame(headers=["Timestamp", "User Name", "Model Name", "Story Name", "User Input", "Chat Response", "Score", "Comment"])
|
200 |
+
|
201 |
+
chat_history_json = gr.JSON(value=[], visible=False)
|
202 |
+
|
203 |
+
send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_input], outputs=[chatbot_output, chat_history_json, data_table])
|
204 |
+
send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json], outputs=[chatbot_input, chatbot_output, chat_history_json])
|
205 |
+
save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown], outputs=[data_table, comment_input])
|
206 |
+
|
207 |
+
demo.launch()
|