rodrisouza commited on
Commit
49de82f
·
verified ·
1 Parent(s): a333bdc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -47
app.py CHANGED
@@ -67,7 +67,6 @@ tokenizer, model = load_model(selected_model)
67
 
68
  # Chat history
69
  chat_history = []
70
- interaction_count = 0 # Initialize interaction count
71
 
72
  # Function to handle interaction with model
73
  @spaces.GPU
@@ -77,11 +76,9 @@ def interact(user_input, history, interaction_count):
77
  if tokenizer is None or model is None:
78
  raise ValueError("Tokenizer or model is not initialized.")
79
 
80
- if interaction_count >= MAX_INTERACTIONS:
81
- history.append({"role": "assistant", "content": "Thank you for the conversation! Have a great day!"})
82
- formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
83
- return "", formatted_history, history, interaction_count
84
-
85
  messages = history + [{"role": "user", "content": user_input}]
86
 
87
  # Ensure roles alternate correctly
@@ -89,26 +86,22 @@ def interact(user_input, history, interaction_count):
89
  if messages[i-1].get("role") == messages[i].get("role"):
90
  raise ValueError("Conversation roles must alternate user/assistant/user/assistant/...")
91
 
 
 
 
92
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
93
 
94
  # Generate response using selected model
95
  input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
96
- chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id) # Increase max_new_tokens
97
  response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
98
 
99
  # Update chat history with generated response
100
  history.append({"role": "user", "content": user_input})
101
  history.append({"role": "assistant", "content": response})
102
 
103
- interaction_count += 1
104
- print(f"Interaction count: {interaction_count}")
105
-
106
  formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
107
 
108
- if interaction_count >= MAX_INTERACTIONS:
109
- history.append({"role": "assistant", "content": "Thank you for the conversation! Have a great day!"})
110
- formatted_history.append((None, "Thank you for the conversation! Have a great day!"))
111
-
112
  return "", formatted_history, history, interaction_count
113
  except Exception as e:
114
  if torch.cuda.is_available():
@@ -121,9 +114,8 @@ def send_selected_story(title, model_name, system_prompt):
121
  global chat_history
122
  global selected_story
123
  global data # Ensure data is reset
124
- global interaction_count
125
  data = [] # Reset data for new story
126
- interaction_count = 0 # Reset interaction count
127
  tokenizer, model = load_model(model_name)
128
  selected_story = title
129
  for story in stories:
@@ -144,7 +136,7 @@ Here is the story:
144
  question_prompt = "Please ask a simple question about the story to encourage interaction."
145
  _, formatted_history, chat_history, interaction_count = interact(question_prompt, chat_history, interaction_count)
146
 
147
- return formatted_history, chat_history, gr.update(value=[]), story["story"], interaction_count # Reset the data table and return the story
148
  else:
149
  print("Combined message is empty.")
150
  else:
@@ -196,38 +188,39 @@ def save_comment_score(chat_responses, score, comment, story_name, user_name, sy
196
 
197
  # Create the chat interface using Gradio Blocks
198
  with gr.Blocks() as demo:
199
- gr.Markdown("# Chat with Model")
200
-
201
- gr.Markdown("## Context")
202
- model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select Model", value=selected_model)
203
- user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
204
- initial_story = stories[0]["title"] if stories else None
205
- story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
206
- system_prompt_dropdown = gr.Dropdown(choices=system_prompts, label="Select System Prompt", value=system_prompts[0])
207
- send_story_button = gr.Button("Send Story")
208
-
209
- gr.Markdown("## Chat")
210
- selected_story_textbox = gr.Textbox(label="Selected Story", lines=10, interactive=False)
211
- with gr.Row():
212
- with gr.Column(scale=1):
213
- chatbot_input = gr.Textbox(placeholder="Type your message here...", label="User Input")
214
- send_message_button = gr.Button("Send")
215
- with gr.Column(scale=2):
216
- chatbot_output = gr.Chatbot(label="Chat History")
217
-
218
- gr.Markdown("## Evaluation")
219
- with gr.Row():
220
- with gr.Column(scale=1):
221
- score_input = gr.Slider(minimum=0, maximum=5, step=1, label="Score")
222
- comment_input = gr.Textbox(placeholder="Add a comment...", label="Comment")
223
- save_button = gr.Button("Save Score and Comment")
224
- data_table = gr.DataFrame(headers=["User Input", "Chat Response", "Score", "Comment"])
 
225
 
226
  chat_history_json = gr.JSON(value=[], visible=False)
227
- interaction_counter_json = gr.JSON(value=0, visible=False)
228
-
229
- send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_dropdown], outputs=[chatbot_output, chat_history_json, data_table, selected_story_textbox, interaction_counter_json])
230
- send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json, interaction_counter_json], outputs=[chatbot_input, chatbot_output, chat_history_json, interaction_counter_json])
231
  save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
232
 
233
  demo.launch()
 
67
 
68
  # Chat history
69
  chat_history = []
 
70
 
71
  # Function to handle interaction with model
72
  @spaces.GPU
 
76
  if tokenizer is None or model is None:
77
  raise ValueError("Tokenizer or model is not initialized.")
78
 
79
+ interaction_count += 1
80
+ print(f"Interaction count: {interaction_count}")
81
+
 
 
82
  messages = history + [{"role": "user", "content": user_input}]
83
 
84
  # Ensure roles alternate correctly
 
86
  if messages[i-1].get("role") == messages[i].get("role"):
87
  raise ValueError("Conversation roles must alternate user/assistant/user/assistant/...")
88
 
89
+ if interaction_count >= MAX_INTERACTIONS:
90
+ user_input += ". Thank you for the questions. That's all for now. Goodbye!"
91
+
92
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
93
 
94
  # Generate response using selected model
95
  input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to("cuda")
96
+ chat_history_ids = model.generate(input_ids, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)
97
  response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
98
 
99
  # Update chat history with generated response
100
  history.append({"role": "user", "content": user_input})
101
  history.append({"role": "assistant", "content": response})
102
 
 
 
 
103
  formatted_history = [(entry["content"], None) if entry["role"] == "user" else (None, entry["content"]) for entry in history if entry["role"] in ["user", "assistant"]]
104
 
 
 
 
 
105
  return "", formatted_history, history, interaction_count
106
  except Exception as e:
107
  if torch.cuda.is_available():
 
114
  global chat_history
115
  global selected_story
116
  global data # Ensure data is reset
 
117
  data = [] # Reset data for new story
118
+ interaction_count = 0 # Reset interaction count for new story
119
  tokenizer, model = load_model(model_name)
120
  selected_story = title
121
  for story in stories:
 
136
  question_prompt = "Please ask a simple question about the story to encourage interaction."
137
  _, formatted_history, chat_history, interaction_count = interact(question_prompt, chat_history, interaction_count)
138
 
139
+ return formatted_history, chat_history, gr.update(value=[]), story["story"]
140
  else:
141
  print("Combined message is empty.")
142
  else:
 
188
 
189
  # Create the chat interface using Gradio Blocks
190
  with gr.Blocks() as demo:
191
+ with gr.Tabs():
192
+ with gr.TabItem("Chat"):
193
+ gr.Markdown("# Chat with Model")
194
+
195
+ with gr.Group(label="Context"):
196
+ model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select Model", value=selected_model)
197
+ user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
198
+ initial_story = stories[0]["title"] if stories else None
199
+ story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
200
+ system_prompt_dropdown = gr.Dropdown(choices=system_prompts, label="Select System Prompt", value=system_prompts[0])
201
+ send_story_button = gr.Button("Send Story")
202
+
203
+ with gr.Group(label="Chat"):
204
+ selected_story_textbox = gr.Textbox(label="Selected Story", lines=10, interactive=False)
205
+ chatbot_input = gr.Textbox(placeholder="Type your message here...", label="User Input")
206
+ send_message_button = gr.Button("Send")
207
+ chatbot_output = gr.Chatbot(label="Chat History")
208
+
209
+ with gr.Group(label="Evaluation"):
210
+ score_input = gr.Slider(minimum=0, maximum=5, step=1, label="Score")
211
+ comment_input = gr.Textbox(placeholder="Add a comment...", label="Comment")
212
+ save_button = gr.Button("Save Score and Comment")
213
+ data_table = gr.DataFrame(headers=["User Input", "Chat Response", "Score", "Comment"])
214
+
215
+ with gr.TabItem("Instructions"):
216
+ gr.Markdown("# Instructions")
217
+ instructions_textbox = gr.Textbox(value="Here are the instructions on how to use the application...", lines=20)
218
 
219
  chat_history_json = gr.JSON(value=[], visible=False)
220
+ interaction_count = gr.Number(value=0, visible=False)
221
+
222
+ send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_dropdown], outputs=[chatbot_output, chat_history_json, data_table, selected_story_textbox])
223
+ send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json, interaction_count], outputs=[chatbot_input, chatbot_output, chat_history_json, interaction_count])
224
  save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])
225
 
226
  demo.launch()